首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
用近红外光谱分析法测定汽油辛烷值   总被引:6,自引:0,他引:6  
用近红外光谱技术测定汽油辛烷值,在高精度分光光度计上测得12个汽油标准样品和4个未知样品的近红外区吸收光谱,建立多元统计分析模型,用逐步回归法和偏最小二乘法对模型进行校准,并将其用于未知样品的预估分析,辛烷值的分析精度达到≤±1.0。  相似文献   

2.
3.
基础数据准确性对近红外光谱分析结果的影响   总被引:14,自引:2,他引:12  
基础数据的准确性是影响近红外光谱分析结果的一个重要因素。文章以人工配制的四组分混合物体系和实际的汽油校正集样本为例,通过人为增加基础数据误差的方法,研究了基础数据的准确性对近红外光谱分析结果的影响。结果表明,基础数据的准确性对近红外分析模型及其预测结果都有一定的影响,基础数据越准确,所建立模型的精度越高,其对未知样本的预测结果也越准确。对于精度相对较差测试方法提供的基础数据,通过大量样本的光谱分析和化学计量学统计处理,近红外方法有可能得到更精确的预测结果。  相似文献   

4.
近红外仪测试二醋酸纤维素醋化值   总被引:1,自引:0,他引:1  
曹建国 《光谱实验室》1999,16(6):674-677
本文研究了近红外仪在近红外区域(1100-2500nm),多重线性回归测定二醋酸纤维素的醋化值的方法。并且就近红外仪测试二醋酸纤维素醋化值的测试结果与传统滴定结果进行了比较,对测量的重现性进行了考察,相对标准偏差为0.07%。  相似文献   

5.
以66个小麦样品为试验材料,研究岭回归方法在近红外光谱定量分析中的应用。用44个小麦样品的近红外光谱数据建立测定蛋白质含量的近红外-岭回归模型,预测其余22个小麦样品的蛋白质含量。预测结果与凯氏定氮法分析结果(化学分析值)的平均相对误差为1.518%,与偏最小二乘法(PLS)预测结果进行比较,显示岭回归方法可用于近红外光谱定量分析;进一步,为了减少无关信息对定量分析模型预测能力的干扰,一种有效的方法就是进行波长信息的选择。从1297个波长点中优选出4个波长点,利用这4个波长点处的光谱信息建立近红外-岭回归模型预测22个样品的蛋白质含量,预测结果与凯氏定氮法分析结果之间的平均相对误差为1.37%,相关系数达到0.9817。结果表明岭回归方法从大量光谱信息中筛选出了最重要的波长信息、不仅简化了模型,有效的减少了光谱信息共线性的干扰,而且对特定分析选择出适用的波长对指导设计专用近红外定量分析仪器亦有实际意义。  相似文献   

6.
PLS-BP法近红外光谱定量分析研究   总被引:19,自引:7,他引:19  
建立BP模型用于近红外光谱定量分析时,为克服所建模型与训练样本集产生“过拟合”,先用线性算法为其压缩训练数据是必要的。目前多采用主成分法(PCA)和逐步回归法(SRA)。主成分法具有极强的压缩数据能力,用它压缩成的主成分输入BP网所建模型的预测精度一般能满足要求,但它处理数据时未考虑输出变量的影响。逐步回归法根据系统输出选择变量,但所选变量具有自相关性,而且与训练集样品的排列顺序有关,很难选出最好的变量,往往难满足预测精度要求。本研究用偏最小二乘法(PLS),根据输出变量将原始数据压缩为主成分,输入BP网并用所建模型预测30个小麦样品的蛋白质含量。结果表明,与PCA-BP模型的预测决定系数(R2)从92.50提高到97.10,训练迭代次数从12 000减少到4 500。  相似文献   

7.
蜂蜜真伪的近红外光谱鉴别研究   总被引:9,自引:0,他引:9  
如何有效鉴别蜂蜜真伪是目前我国蜂产品质量控制的难题之一。提出了一种用傅里叶变换近红外光谱结合判别偏最小二乘法(DPLS)快速鉴别蜂蜜真伪的新方法。首先采集了71个商品蜜样品的近红外光谱数据,其中包括27个纯蜂蜜和44个掺假蜂蜜,然后5次随机划分建模集样本和验证集样本,并对建模样本进行不同光谱预处理,选择并优化不同波段范围和主成分数,用DPLS法建立了5组蜂蜜样本的真伪鉴别模型,外部交叉验证法预测模型。通过对结果进行比较分析,5组校正模型中真蜂蜜和掺假蜂蜜的总体识别准确率分别为91.49%,94.68%,92.98%,93.86%,94.87%;预测样本的识别准确率为86.96%~93.75%,其中模型2,3,4中掺假蜜的识别准确率达100%。研究结果表明,该方法可作为鉴别商品蜜真伪的一种快速筛选技术,在我国蜂蜜质量监控中具有重要意义。  相似文献   

8.
将近红外光谱技术和化学计量学相结合分析慈竹纤维素结晶度。通过区间偏最小二乘法(iPLS)、联合区间偏最小二乘法(siPLS)和反向区间偏最小二乘法(biPLS)优化建模区域,建立经多元散射校正后光谱的结晶度分析模型,并与全光谱范围350~2 500nm建立的偏最小二乘(PLS)模型进行比较。结果表明,三种改进偏最小二乘法建立的结晶度模型预测效果均优于PLS模型,并且当采用联合区间偏最小二乘法将全光谱进行30个子区间划分,选择三个子区间[8 12 19]组合时,建立的siPLS模型预测效果最好,相关系数(r)达到0.88,预测标准差(RMSEP)为0.0117。因此,采用联合区间偏最小二乘法可以有效选择建模光谱区域,提高模型预测能力,实现慈竹纤维素结晶度的快速预测。  相似文献   

9.
利用反向区间偏最小二乘法(BiPLS)定位光谱糖度若干信息区间,运用遗传算法(GA)从中选择波长点,建立了多元线性回归(MLR)模型。光谱进行卷积平滑和二阶导数处理后,将光谱(225个数据点)分割成25个子区间时,BiPLS优化结果最优。在所定位的信息区间进行GA二次选择特征变量,运行100次依次选择入选频率较高的12个波长点。为简化MLR模型,对于入选的相邻波长选择频率较高者,最后选择 638,734,752,868,910,916和938 nm作为回归变量,建立的MLR预测模型相关系数(R2)、校正均方根误差(RMSEC)和预测均方根误差(RMSEP)分别为0.984,0.364和0.471,优于常用的逐步多元线性回归的建模结果。表明BiPLS结合GA可以有效地对李子糖度可见/近红外光谱MLR回归变量进行筛选,提高了模型的精度。  相似文献   

10.
光谱椭偏仪是常用的测量薄膜厚度及材料光学性质的仪器,其准确性主要由系统的校准过程确定。提出一种新的利用标准样品校准光谱椭偏仪的方法。该方法通过对多个已知厚度和已知材料特性的薄膜样品进行测量,利用测量得到的多个样品的傅里叶系数光谱与包含未知校准参数的理论光谱之间进行对比,通过最小二乘法拟合,回归求解出整个系统的未知校准参数,包括偏振器方位角,波片延迟,波片方位角和系统入射角等。将该方法的应用领域扩展到200~1000nm的宽光谱区域,并通过测量3~13nm的SiO2/Si薄膜样品,实验验证了该方法的有效性,准确性达到0.194nm。该方法相对于传统校准方法更加简单、快速。  相似文献   

11.
正交信号校正应用于多元线性回归建模的研究   总被引:2,自引:0,他引:2  
通过近红外光谱技术建立二元、三元调和食用油中花生油含量模型以及二甲亚砜水溶液浓度模型,比较了分别采用原始光谱和正交信号校正(OSC)处理后光谱进行MLR建模的结果,并对所建的正交信号校正后光谱MLR模型与原始光谱PLS模型进行预测结果比较.比较过程中使用交互验证参数(包括决定系数Rc,标准偏差SEC,预测值和实际值线性...  相似文献   

12.
结合小波变换与微分法改善近红外光谱分析精度   总被引:3,自引:2,他引:3  
微分法可以有效消除光谱背景和基线漂移,同时会增加光谱噪音;小波变换具有很好的去噪功能,章将微分法和小波变换结合用于重整汽油辛烷值近红外光谱分析。考察了微分噪音对辛烷值分析精度的影响以及小波去噪对微分光谱的噪音扣除以及对辛烷值分析精度改善情况。结果表明,微分光谱可以扣除原始光谱的基线漂移,提高分析精度,同时增加光谱的噪音;噪音对分析精度影响很大。微分光谱经过小波去噪处理后信噪比增加,辛烷值分析精度得到改善。  相似文献   

13.
选取赣南脐橙果园土壤作为研究对象,探讨在4 000~7 500 cm-1范围内的光谱分析土壤全氮和有机质的可行性。采集的近红外光谱采用多元散射校正、一阶微分、二阶微分、七点平滑等多种预处理对比分析,分别建立了有机质和全氮含量偏最小二乘模型。实验得出全氮预测模型在4 000~7 500 cm-1范围内采用七点平滑(SG)进行预处理模型较为理想,校正集相关系数(rc)为0.802,校正均方根误差(RMSEC)为2.754,预测集相关系数(rp)为0.715,预测均方根误差(RMSEP)为3.077;有机质预测模型在4 000~7 500 cm-1范围内采用标准正态变量变换(SNV)预处理模型较为理想,rc为0.848,RMSEC为0.128,rp为0.790,RMSEP为0.152。研究表明近红外漫反射光谱可快速用于赣南脐橙果园的土壤中全氮和有机质含量的快速检测。  相似文献   

14.
应用近红外光谱技术,以偏最小二乘算法,计算预测了37种生药药材甲醇提取物的抗氧化活性。以交叉验证相关系数(R2),交叉验证误差均方根(RMSECV)为指标,考察、比较了光谱预处理方法对模型效果的影响,以预测误差均方根(RMSEP)和相对分析误差(RPD)考核了样本的预测效果,采用1,1-二苯基-2-苦肼基(DPPH)法进行了验证。研究表明,采用一阶导数+矢量归一化预处理法和筛选的近红外波段建模,预测性能最优,校正模型的R2为0.896 0,RMSECV为4.35%;预测样本的RMSEP为3.62%,RPD为2.38。近红外光谱分析技术便捷快速,可信度较高,可以用于生药抗氧化性质的整体评价。  相似文献   

15.
提出了一种基于近红外(NIR)光谱的黄酮类提取物抗氧化活性计算预测新方法。采用1,1-二苯-2-苦肼基(DPPH)法测定28种黄酮类中药材提取物的抗氧化活性,并在4 000~10 000 cm-1范围扫描样品的红外光谱,采用偏最小二乘(PLS)算法建立了黄酮类组分近红外光谱与抗氧化活性之间的校正模型。建模过程中,以交叉验证相关系数(R2),交叉验证误差均方根(RMSECV)为指标,确定了用于建模的最优近红外波段和光谱预处理方法。校正模型的RSECV为9.50%,R2为 0.901 7,预测误差均方根(RMSEP)为14.8%。该方法快速无损、操作简便,可用于中药及天然产物提取物抗氧化活性的快速评价。  相似文献   

16.
基于近红外技术快速测定不同鲜肉中脂肪含量   总被引:4,自引:0,他引:4  
随着畜禽肉和肉制品食用量的迅速增长,人们对肉品质量提出了更高的要求;对于肉制品,消费者最为关心是肉品质量, 当前中国对肉品品质在线检测方面的研究和应用则相对较少,尚无针对肉品品质在线无损检测开发的设备。也没能真正投入到肉品的生产加工过程。研究不同肉品脂肪的近红外快速检测模型。并采用标准化学方法进行差异分析。通过近红外技术对猪肉、牛肉、羊肉进行扫描,采用国标法(索氏提取法)对鲜肉脂肪含量进行化学值的测定,以PLS(偏最小二乘法)作为建模方法,并通过不同的光谱预处理手段分别建立了猪牛羊肉的近红外光谱参数与样品的脂肪含量之间的对应关系模型。结果表明,对于猪肉来说,选择4 260~6 014 cm-1波段+一阶导+Norris所建的模型效果最好,其校正相关系数和预测相关系数分别为0.955 6和0.961 6;对于牛肉来说,选择5 226~7 343 cm-1波段+一阶导+S-G所建的模型效果最好, 其校正相关系数和预测相关系数分别为0.923 5和0.942 7;对于羊肉来说,选择5 207~7 362 cm-1波段+一阶导+Norris所建的模型效果最好,其校正相关系数和预测相关系数分别为0.915 7和0.939 6;对于鲜肉来说,选选用波段为5 156~6 065 cm-1+二阶导+S-G所建模型效果最好,其校正相关系数和预测相关系数分别为0.916 3和0.919 4。以上所有模型的校正相关系数均大于0.91,模型都具有较高的精密度,符合不同肉制品在实际生产的需求,具有分析速度快、检测成本低、分辨率高、无损的优点。  相似文献   

17.
复合肥料多种养分含量快速分析新方法   总被引:1,自引:0,他引:1  
提出了一种同时测定复合肥料中多种养分含量的快速分析新方法,即用水将固体复合肥料定容溶解,采集其溶液部分的近红外光谱进行各种养分含量的分析预测。使用此方法建立了偏最小二乘回归模型,其中总氮、有效五氧化二磷、氧化钾和石粉含量模型的SEP值分别为0.5,0.7,0.8和2.0。方法操作方便,解决了近红外漫反射光谱法无法准确测定氧化钾含量的技术难题,实现了在5分钟内完成复合肥全部成分含量的快速准确分析。  相似文献   

18.
小麦PLS近红外定量分析中温度修正的研究   总被引:1,自引:1,他引:0  
以45个小麦籽粒为实验样品,研究样品温度对小麦PLS近红外定量分析的影响, 并提出引入温度修正量对样品光谱进行修正的方法。采用PLS算法将光谱受温度影响部分剔除后,得到不受温度影响的光谱,再进行模型建立与样品分析。实验结果表明:引入温度修正可以有效的消除温度对模型预测结果的影响,从而提高模型的稳定性及应用范围。  相似文献   

19.
NIR光谱的Isomap-PLS非线性建模方法   总被引:6,自引:0,他引:6  
针对样品的近红外(NIR)光谱与其物理化学性质之间存在的非线性关系,提出了一种结合等距映射(Isomap)和偏最小二乘(PLS)的非线性建模新方法。Isomap是一种新的非线性降维方法,属于流形学习方法,能有效地发现高维数据中的本真低维结构。Isomap-PLS建模方法首先用Isomap对高维NIR光谱数据作非线性降维,再用PLS降维并建立校正模型。将Isomap-PLS建模方法分别应用于两个公开的NIR光谱标准数据集,并与PLS单独建模进行比较。结果表明,在两个数据集上,用Isomap-PLS方法建立的校正模型比单独用PLS算法建立的校正模型具有更小的交叉验证均方根误差(RMSECV);对某些性质数据,Isomap-PLS模型比PLS模型的RMSECV值要小2~5倍。因此,Isomap能够有效反映NIR光谱中存在的非线性结构,Isomap-PLS比PLS具有更好的建模与预测能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号