首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In central Japan, the Pacific plate subducts westward beneath the Eurasian plate and the Philippine Sea plate subducts northwestward into the mantle wedge between the Eurasian plate and the subducted Pacific slab. There, the Northeast Japan arc is joined to the Izu-Ogasawara arc. We determined 87Sr/86Sr ratios and Rb and Sr contents for 47 volcanic rock samples from 15 Quaternary volcanoes in central Japan and summarized the geographical distribution of the ratios. The general trend of slowly increasing 87Sr/86Sr ratio from the back-arc side toward the volcanic front in the Northeast Japan arc is broken by a marked high ratio (above 0.7060) centered around Akagi volcano located at the southernmost region of the arc. Elsewhere, the ratio along the volcanic front in this arc varies within the range 0.7038 to 0.7045. The marked high 87Sr/86Sr ratio is considered to be due to the addition of slab-derived components transported by the Philippine Sea plate to the magma-generating region in the mantle wedge beneath central Japan. Therefore, the geographical distribution of the high ratio may correspond to that of the Philippine Sea slab-derived components in the mantle wedge and we may draw the underground outline of the Philippine Sea plate. This outline implies that an aseismic portion of the Philippine Sea plate continues a few tens km ahead of the seismic one. A belt of low 87Sr/86Sr ratios from the Izu Peninsula northwestward along the northern end of the Izu-Ogasawara arc coincides with the zone where the subducting Philippine Sea plate is not observed seismologically, while it is detected seismologically on both sides of the belt.  相似文献   

2.
Igneous rocks from the Philippine tectonic plate recovered on Deep Sea Drilling Project Legs 31, 58 and 59 have been analyzed for Sr, Nd and Pb isotope ratios. Samples include rocks from the West Philippine Basin, Daito Basin and Benham Rise (40–60 m.y.), the Palau-Kyushu Ridge (29–44 m.y.) and the Parece Vela and Shikoku basins (17–30 m.y.). Samples from the West Philippine, Parece Vela and Shikoku basins are MORB (mid-ocean ridge basalt)-like with 87Sr/86Sr= 0.7026−0.7032, 143Nd/144Nd= 0.51300−0.51315, and 206Pb/204Pb= 17.8−18.1. Samples from the Daito Basin and Benham Rise are OIB (oceanic island basalt)-like with 87Sr/86Sr= 0.7038−0.7040, 143Nd/144Nd= 0.51285−0.51291 and 206Pb/204Pb= 18.8−19.2. All of these rocks have elevated 207Pb/204Pb and 208Pb/204Pb compared to the Northern Hemisphere Regression Line (NHRL) and have δ207Pb values of 0 to +6 and δ208Pb values of +32 to +65. Lavas from the Palau-Kyushu Ridge, a remnant island arc, have 87Sr/86Sr= 7032−0.7035, 143Nd/144Nd= 0.51308−0.51310 and 206Pb/204Pb= 18.4−18.5. Unlike the basin magmas erupted before and after them, these lavas plot along the NHRL and have Pb-isotope ratios similar to modern Pacific plate MORB's. This characteristic is shared by other Palau-Kyushu Arc volcanic rocks that have been sampled from submerged and subaerial portions of the Mariana fore-arc.At least four geochemically distinct magma sources are required for these Philippine plate magmas. The basin magmas tap Source 1, a MORB-mantle source that was contaminated by EMI (enriched mantle component 1 [31]) and Source 2, an OIB-like mantle source with some characteristics of EMII (enriched mantle component 2 [31]). The arc lavas are derived from Source 3, a MORB-source or residue mantle including Sr and Pb from the subducted oceanic crust, and Source 4, MORB-source or residue mantle including a component with characteristics of HIMU (mantle component with high U/Pb [31]). These same sources can account for many of the isotopic characteristics of recent Philippine plate arc and basin lavas. The enriched components in these sources which are associated with the DUPAL anomaly were probably introduced into the asthenosphere from the deep mantle when the Philippine plate was located in the Southern Hemisphere 60 m.y.b.p.  相似文献   

3.
Kozo  Uto Yoshmjki  Tatsumi 《Island Arc》1996,5(3):250-261
Abstract Quaternary volcanism of the Japanese Islands is examined from the perspective of experimental petrology, geographic distribution of volcanoes and spatial geochemical variations. The dehydration of amphibole and chlorite at a 110 km depth and of phlogopite at ∼180 km in the downdragged hydrous mantle layer would result in the occurrence of two volcanic chains parallel to the trench axis. Long-term subduction of the old Pacific plate and recent subduction of the young Philippine Sea plate beneath East Japan and West Japan volcanic belts respectively, would be critical for the significant difference in intensity, style and geochemistry of Quaternary volcanism between the two volcanic belts. The geochemistry of volcanic rocks in Northeast Japan and those in the Ryukyu arc is typical of 'island-arcs' having low LIL/HFS element ratios, while alkalic basalts along the Japan Sea coast side in Southwest Japan have high LIL/HFS ratios similar to intra-continental or oceanic island basalts. Across-arc variations in eruptive volume and distributional density of volcanoes and in geochemistry are documented in Northeast Japan and are well explained by the decreasing degrees of partial melting toward back-arc side, and the difference in geochemistry of fluids supplied by the downdragged hydrous layer.  相似文献   

4.
Quaternary volcanoes in the Padang area on the west coast of Sumatra have produced two-pyroxene, calc-alkaline andesite and volumetrically subordinate rhyolitic and andesitic ash-flow tuffs. A sequence of andesite (pre-caldera), rhyolitic tuff and andesitic tuff, in decreasing order of age, is related to Maninjau caldera. Andesite compositions range from 55.0 to 61.2% SiO2 and from 1.13 to 2.05% K2O. Six K-Ar whole-rock age determinations on andesites show a range of 0.27 ± 0.12 to 0.83 ± 0.42 m.y.; a single determination on the rhyolitic ashflow tuff gave 0.28 ± 0.12 m.y.Eight 57Sr/26Sr ratios on andesites and rhyolite tuff west of the Semangko fault zone are in the range 0.7056 – 0.7066. These ratios are higher than those elsewhere in the Sunda arc but are comparable to the Taupo volcanic zone of New Zealand and calc-alkaline volcanics of continental margins. An 87Sr/86Sr ratio of 0.7048 on G. Sirabungan east of the Semangko fault is similar to an earlier determination on nearby G. Marapi (0.7047), and agrees with 87Sr/86Sr ratios in the rest of the Sunda arc. The reason for this distribution of 87Sr/86Sr ratios is unknown.The high 87Sr/86Sr ratios are tentatively regarded to reflect a crustal source for the andesites, while moderately fractionated REE patterns with pronounced negative Eu anomalies suggest a residue enriched in plagioclase with hornblende and/or pyroxenes. Generation of associated andesite and rhyolite could have been caused by hydrous fractional melting of andesite or volcanogenic sediments under adiabatic decompression.  相似文献   

5.
A province of alkaline volcanism has developed over the last 10 m.y. in the northwestern part of the Caribbean plate. Most of the volcanism is Quaternary in age and follows an apparent halving of the spreading rate at the Cayman Rise spreading center 2.4 m.y. ago. Intraplate deformation in Central America and the Nicaraguan Rise has produced a series of north-south orientated grabens. This extensional tectonism is associated temporally and spatially with some of the alkaline magmatism. Strontium isotopic ratios of rocks from sixteen of these centers of volcanism enable three separate areas with different isotopic characteristics to be identified. The largest area corresponds to the Nicaraguan Rise and is characterized by low87Sr/86Sr ratios (0.7026–0.7031). A more concentrated area of alkaline magmatism in northeastern Costa Rica has intermediate87Sr/86Sr ratios (0.7036–0.7038) which are within the range shown by the adjacent calc-alkaline volcanoes. In central Hispaniola high87Sr/86Sr ratios (0.7047–0.7063) are found in strongly alkalic rocks and in rocks that are transitional to calc-alkaline in nature. In both Costa Rica and Hispaniola the increased radiogenic strontium may have come from volatile-rich fluids escaping from adjacent subducting slabs of oceanic crust. The isotopic differences between the two areas may be related to the relative longevity and high rate of subduction in Costa Rica compared to Hispaniola. The Costa Rican alkaline rocks overlie a segment of the Cocos plate which is being subducted at a smaller angle (~ 35°) than at the rest of the Central American arc.  相似文献   

6.
The Pampean Ranges of northwest Argentina are a basin-and-range tectonic province with a late Precambrian to Paleozoic basement and extensive Miocene-Recent calc-alkaline volcanism. The volcanoes include the large resurgent Cerro Galan caldera, and Recent scoria cones and lava flows. Miocene-Recent volcanic rocks of basalt to dacite composition from the Cerro Galan area exhibit a range of Rb/Sr ratios of 0.043–1.092 and initial87Sr/86Sr ratios of 0.7057–0.7115 with a clear positive correlation between87Sr/86Sr and87Rb/86Sr, indicating an apparent age of ca. 130 Ma. This relationship is interpreted to indicate that the Sr isotope variation in the Cerro Galan volcanic rocks results from mixing of a mantle-derived component with low87Sr/86Sr (<0.7057) and high Sr (>700 ppm) with a crustal component characterized by higher87Sr/86Sr (>0.7115) and lower Sr (<240 ppm). It is concluded that the mixing is best explained as a result of a small degree of selective crustal Sr contamination (ca. 10%) of a range of subsequently erupted magmas produced largely by fractional crystallization within the continental crust. We propose that the mantle-derived end-member is derived by partial melting of sub-Andean mantle with an87Sr/86Sr ratio of ca. 0.704, and that such an Sr isotope ratio characterizes the source region for calc-alkaline volcanic rocks throughout the Andes.  相似文献   

7.
Diverse87Sr/86Sr and143Nd/144Nd isotopic compositions among basalts from the Lau Basin (LBB), an active backarc basin in the southwest Pacific, indicate heterogeneity in the underlying mantle. Isotopic compositions display bimodal distributions which are related to geographic location. Type I LBB (87/Sr86Sr 0.70366;143Nd/144Nd 0.51297) include tholeiites from the central basin, Peggy Ridge, and Rochambeau Bank, while Type II basaltic and andesitic glasses from the northeastern portion of the basin, near Niua Fo'ou island, have higher87Sr/86Sr ( 0.7038) and lower 143Nd/144Nd ( 0.51288). Both depleted (e.g. N-MORB) and enriched (e.g. E-MORB) trace element abundances occur among Type I and Type II LBB.Covariation between trace element and isotopic ratios among Type I LBB is consistent with mixing between depleted mantle similar to the source for MORB and relatively enriched peridotite similar to the source for E-MORB. Relative to MORB, uniformly high87Sr/86Sr ( +0.0005) among all Type I LBB for given Nd isotopic compositions ( εNd = +8 to +12) may reflect a lithospheric component, such as ancient recycled altered ocean crust. Type II LBB have SrNd isotopic compositions which are gradational between enriched mantle similar to the source of OIB and a component with distinct Sr isotopic composition such as that observed in Samoan post-erosional basalts. Isotopic and geographic discontinuity between Type I and Type II LBB, and isotopic affinity of Type II and Niua Fo`ou island basalts with those from Samoa suggests that volcanism in the northeastern portion of the basin is tapping deeper mantle beneath the adjoining Pacific plate, as well as Indo-Australian mantle overlying the Pacific lithosphere that is subducted into the Tonga Trench.  相似文献   

8.
Volcanic rocks of the Sunda and Banda arcs range from tholeiitic through calcalkaline and shoshonitic to leucititic, the widest compositional span of mafic magmatism known from an active arc setting.Mafic rocks in our data set, which includes 315 new analyses of volcanic rocks from twelve Quaternary volcanoes, including Batu Tara in the previously geochemically unknown Flores-Lembata arc sector, are generally similar to those from other island arcs: most contain <1.3 wt. % TiO2 and 16–22 wt. % Al2O3, and have characteristically high K/Nb and La/Nb values. Abundances of P, Ba, Rb, Sr, La, Ce, Nd, Zr and Nb increase sympathetically with increasing K2O contents of mafic rocks but those of Na, Ti, Y and Sc vary little throughout the geochemical continuum from low-K tholeiitic to high-K leucititic rocks.Excluding Sumatra and Wetar, which possess mainly dacitic and rhyolitic volcanics, the Sunda-Banda arc is divisible into four geochemical arc sectors with boundaries that correlate with major changes in regional tectonic setting and geological history. From west to east, the West Java, Bali and Flores arc sectors each comprise volcanoes which become progressively more K-rich eastwards, culminating in the leucitite volcanoes Muriah, Soromundi and Sangenges, and Batu Tara, respectively. In the most easterly Banda sector, the volcanics vary from high- to low-K eastwards around the arc.Correlations between geochemistry and 87Sr/86Sr values show separate trends for each of the four arc sectors, believed to be the result of involvement of at least three geochemically and isotopically distinct components in the source regions of the arc magmatism.A dominant source component with a low K content and a low 87Sr/86Sr value, and common to all sectors, is probably peridotitic mantle. A second component, with low K content but high 87Sr/86Sr value, appears to be crustal material. This component is most apparent in the Banda sector, in keeping with that sector's tectonic setting close to Precambrian Australian continental crust, but it is also present to lesser extents in the West Java and Flores sectors.However, the most marked geochemical and isotopic variations shown by the arc volcanics are primarily due to the involvement of a third component, which is rich in K-group elements but has relatively low 87Sr/86Sr values. This component appears to be mantle-derived and is least overprinted by crustal material in the Bali sector volcanics where the Pb, Be, U-Th and O isotope characteristics of the rocks support the suggestion that their genesis has not involved incorporation of recently subducted, continent-derived sialic material.The high, regionally persistent, Th/U value (about 4.3) of the Sunda subarc mantle, obtained from U-Th isotopic data, suggests a close association could exist between the K-rich component and the southern hemisphere ‘DUPAL’ mantle isotopic anomaly.  相似文献   

9.
The Cenozoic volcanic rocks of the southern Andes are characterized by low 87Sr/86Sr ratios (0.7040–0.7045), which are consistent with an origin in the downgoing slab of oceanic lithosphere or the overlying mantle. These values are distinctly lower than those from corresponding rocks of the central Andes.The calc-alkaline rocks of the central Andes exhibit higher Sr isotopic values (0.705–0.713) and variable Rb/Sr ratios. Different explanations are possible for this behaviour as well as for the positive correlation between 87Sr/86Sr and Rb/Sr expressed in an apparent isochron of 380 ± 50 m.y. It is postulated that these magmas result from a mixing process between a primary magma with basaltic affinities and crustal material of relatively young age.A model is proposed for the generation of the “andesitic” magmas of the central Andes by which crustal rocks of the upper part of the crust are added to the base of the crust by an accretionary process at the margin of the continent. Melts from these upper crustal rocks act as contaminants in “andesitic” magmas.The role of crustal material is still more significant in the generation of the ignimbritic magmas; they are considered to result from a two-stage melting process by which igneous rocks, belonging to a former stage of development of the Andes, are engulfed in the subduction zone, where they melt.  相似文献   

10.
Rosemary  Hickey-Vargas 《Island Arc》2005,14(4):653-665
Abstract Basalts and tonalites dredged from the Amami Plateau in the northern West Philippine Basin have the geochemical characteristics of intraoceanic island arc rocks: low 87Sr/86Sr (0.70297–0.70310), intermediate 143Nd/144Nd (0.51288–0.51292), moderate light rare earth element (LREE) enrichment (La/Yb = 4.1–6.6) and high La/Nb (1.4–4.3). The incremental heating of hornblende from tonalites yielded well‐defined plateaus and 40Ar/39Ar isochron ages of 115.8 ± 0.5 Ma and 117.0 ± 1.1 Ma, while plagioclase yielded disturbed Ar release patterns, with ages ranging from 70 to 112 Ma. Taken together, these results show that the Amami Plateau was formed by subduction‐related magmatism in the Early Cretaceous period, earlier than indicated by prior K/Ar results. The results support tectonic models in which the West Philippine Basin was opened within a complex of Jurassic–Paleocene island arc terranes, which are now scattered in the northern West Philippine Basin, the Philippine Islands and Halmahera. The Amami Plateau tonalites and basalts have higher Sr/Y and lower Y and 87Sr/86Sr compared with younger tonalitic rocks from the northern Kyushu–Palau Ridge and the Tanzawa complex, which were formed by the subduction of the Pacific Plate beneath the Philippine Sea Plate. Based on the geochemical characteristics of the basalts, the Early Cretaceous subduction zone that formed the Amami Plateau may have been the site of slab melting, which suggests that a younger and hotter plate was being subducted at that time. However, the Amami tonalites were probably formed from basaltic magma by fractional crystallization or by partial melting of basaltic arc crust, rather than by melting of the subducted slab.  相似文献   

11.
143Nd/144Nd,87Sr/86Sr and REE results are reported on volcanic rocks from the islands of Dominica and St. Kitts in the Lesser Antilles. Particular attention is given to the lavas and xenoliths of the Foundland (basalt-andesite) and the Plat Pays (andesite-dacite) volcanic centres on Dominica. Combined major and trace element [2] and isotope results suggest that the bulk of the andesites and dacites on Dominica, and by analogy in the rest of the arc, are produced by fractional crystallisation of basaltic magma. The differences in the erupted products of the two volcanoes do not appear to be related to any significant differences in the source rocks of the magmas.Along the arc87Sr/86Sr ratios range from 0.7037 on St. Kitts, to 0.7041–0.7047 on Dominica, and 0.7039–0.7058 on Grenada [5], and these are accompanied by a parallel increase in K, Sr, Ba and the light REE's. Moreover, compared with LIL-element-enriched and -depleted rocks from MOR and intraplate environments, the basic rocks from the Lesser Antilles are preferentially enriched in alkaline elements (K, Ba, Rb, Sr) relative to less mobile elements such as the rare earths.143Nd/144Nd varies from 0.51308 on St. Kitts, to 0.51286 on Dominica, and 0.51264–0.51308 on Grenada [5], and all these samples have relatively high87Sr/86Sr ratios compared with the main trend of Nd and Sr isotopes for most mantle-derived volcanic rocks. Alkaline elements and87Sr appear to have been introduced from the subducted ocean crust, but the results on other, less mobile elements are more ambiguous — island arc tholeiites (as on St. Kitts) do not appear to contain significant amounts of REE's, Zr, Y, etc., from the subducted oceanic crust, but such a contribution may be present in more LIL-element-enriched calc-alkaline rock types.  相似文献   

12.
The tectonic environment of Kyushu, Japan is affected both by the subduction of the Philippine Sea plate and by the extensional tectonics related to rifting of Okinawa Trough at the eastern margin of the Eurasia Plate. We found that the Sendai fault zone acts as a channel for concurrent eruption of oceanic island basalt (OIB)-type and island arc (IA)-type basaltic rocks, propagating west to east in the Sendai region of southern Kyushu. The location of the Sendai fault zone is likely to correspond to the left-lateral shear zone in southern Kyushu as inferred by GPS Earth Observation Network. A similar magmatic association is present in the Beppu–Shimabara (BS) graben system in central Kyushu. The associate magmas of OIB-type rocks in Kyushu can be classified into typical, EM II-like and their intermediate OIB-type magmas in addition to MORB-like OIB-type magma in 87Sr/86Sr–Nb/Y systematics. Typical OIB-type and intermediate OIB-type magmas are erupted within the Sendai fault zone and BS graben system, respectively. The former is characterized by highest Nb/Y but low 87Sr/86Sr similar to MORB-like OIB-type magma erupted in northern Kyushu and the latter has intermediate Nb/Y and 87Sr/86Sr between typical and EM II-like OIB-type magmas. Almost all the IA-type rocks within the Sendai fault zone are generated from parental IA-type magma in Kyushu and characterized by weak crustal assimilation, having the lowest 87Sr/86Sr similar to typical OIB-type magma but the highest 143Nd/144Nd of arc magmas in Kyushu. The ages of both types of basaltic rocks within the Sendai fault zone range from 1.6 to <0.01?Ma clearly younger than those of andesitic rocks on northern and southern outsides of the fault zone and become younger from west to east. Initial formation of the fault zone has been induced by the counterclockwise rotation of southern Kyushu during the last 2?Ma as well as the BS graben system. Kyushu has continued to be split into three parts by the Sendai fault zone and BS graben during the Quaternary; northern, central, and southern zones. Their initial formation ages are likely to be linked to the initial rifting age of the middle Okinawa Trough back-arc basin.  相似文献   

13.
18O/16O and 87Sr/86Sr ratios were determined for Quaternary calc-alkalic volcanic rocks from six volcanic rock suites in the central and western Japan arcs. The δ18O values relative to SMOW and 87Sr/86Sr ratios range from +6.3 to +9.90/00 and 0.70357 to 0.70684, respectively. Both the O- and Sr-isotopic compositions are higher than those for island-arc primitive magmas and their differentiates. The isotopic compositions of the calc-alkalic rocks cannot be derived by a simple fractional crystallization of the primitive magmas. On the other hand, the 18O- and 87Sr-enrichment is confined to the rock suites located in well-developed island arcs having thick continental-type crust with low or negative Bouguer anomalies. Involvement of 18O- and 87Sr-rich crustal material in the magma formation is suggested.The isotopic compositions vary remarkably within individual rock suites as well as from volcano to volcano. The data points in δ18O vs. 87Sr/86Sr plot accord with a mixing model between primitive magmas and crustal material of dioritic composition on an average, assuming their comparative Sr contents. The primitive magmas involved could not be low-Sr tholeiites, but magmas more or less enriched in incompatible elements including Sr, which correspond to high-alkali tholeiites or alkali basalts and their evolved magmas. The nature of the primitive magmas seems to change from tholeiitic to more alkalic with progressing island-arc evolution.Mixing of crust-derived melts is more plausible than assimilation of solid-rocks for involving 20 to 30% crustal material in the magmas along simple mixing curves. Isotopic variations between the rock suites are ascribed to variable Sr concentration radio of the end-members, variable isotopic compositions of crustal material or variable mixing ratio of the end-members. Extremely high-δ 18O rocks with moderate increase in 87Sr/86Sr ratio suggest another mixing process in shallower magma chambers between andesite magmas and metasedimentary rocks having high δ 18O and 87Sr/86Sr values but low Sr content. Subsequent fractional crystallization of once-derived magmas would be the prominent process for the rock suites showing gradual increase in 18O up to 10/00 with uniform 87Sr/86Sr ratios.  相似文献   

14.
We have collected 34 hot spring and mineral spring gases and waters in the Chugoku and Kansai districts, Southwestern Japan and measured the 3He/4He and 4He/20Ne ratios by using a noble gas mass spectrometer. Observed 3He/4He and 4He/20Ne ratios range from 0.054 Ratm to 5.04 Ratm (where Ratm is the atmospheric 3He/4He ratio of 1.39 × 10−6) and from 0.25 to 36.8, respectively. They are well explained by a mixing of three components, mantle-derived, radiogenic, and atmospheric helium dissolved in water. The 3He/4He ratios corrected for air contamination are low in the frontal arc and high in the volcanic arc regions, which are consistent with data of subduction zones in the literature. The geographical contrast may provide a constraint on the position of the volcanic front in the Chugoku district where it was not well defined by previous works. Taking into account the magma aging effect, we cannot explain the high 3He/4He ratios of the volcanic arc region by the slab melting of the subducting Philippine Sea plate. The other source with pristine mantle material may be required. More precisely, the highest and average 3He/4He ratios of 5.88 Ratm and 3.8±1.6 Ratm, respectively, in the narrow regions near the volcanic front of the Chugoku district are lower than those in Kyushu and Kinki Spot in Southwestern Japan, but close to those in NE Japan. This suggests that the magma source of the former may be related to the subduction of the Pacific plate, in addition to a slight component of melting of the Philippine Sea slab.  相似文献   

15.
87Sr/86Sr and143Nd/144Nd ratios, REE and selected minor and trace elements are presented and compared for present-day volcanic rocks in the Scotia Sea.Tholeiitic basalts from the South Sandwich Islands show widely ranging contents of some lithophile elements, e.g. K2O (0.09–0.55%) and Rb (1.55–14.2 ppm), but fairly constant Na2O and Sr. Total REE contents range from about 4–20 times chondritic abundances with significant light-REE depletion and both positive and negative Eu anomalies. The variations in minor and trace element abundances are consistent with low-pressure fractional crystallization of plagioclase and clinopyroxene but only minor amounts of olivine. The87Sr/86Sr and143Nd/144Nd ratios of the parental magmas are thought be 0.7038–0.7039 and 0.51301–0.51314 respectively, and indicate derivation of at least some87Sr from subducted ocean crust.The back-arc tholeiites in the Scotia Sea have lower87Sr/86Sr ratios (0.7028–0.7033), similar143Nd/144Nd ratios (0.51305) and are variably light-REE-enriched(CeN/YbN= 1.0–1.6). Total REE contents are comparable to those of the South Sandwich Islands tholeiites.  相似文献   

16.
The Philippine islands are situated between two oppositely dipping zones of seismicity. With the exception of a few areas, such as in the west central Philippines where the North Palawan continental terrane (NPCT) has collided with the archipelago, these seismic zones are well defined to depths of 200 km. Active volcanic chains overlay segments in each of these zones, suggesting that subduction is presently taking place both east and west of the islands. Lavas we have studied are thus divided between what has been termed the West Philippine arc and the East Philippine arc.West Philippine arc volcanic rocks which were extruded before the Philippine archipelago collided with the NPCT, or which are younger than the collision but crop out hundreds of kilometers from the collision zone, and all but one of the rocks from the East Philippine arc fall in the MORB field on207Pb/204Pb versus206Pb/204Pb covariation diagrams. This is surprising considering the frequency with which arc materials have207Pb/204Pb ratios higher than those of MORB, the highBa/REE and Sr/REE ratios in the lavas and the possibility of sediment subduction given the small accretionary prisms. All of these rocks have high208Pb/204Pb ratios with respect to Pacific and Atlantic Ocean MORB, but are similar to Indian Ocean MORB and IOB. Thus the Philippines consist of island arcs with the peculiar Dupal isotopic anomaly documented between 0° and 60°S in the southern hemisphere and particularly in the Indian Ocean region. This demonstrates that the Dupal isotopic anomaly is not restricted to the southern hemisphere, or to MORB and OIB.Post-collision rocks cropping out near the NPCT, in the West Philippine arc, have elevated208Pb/204Pb and 207Pb/204Pb ratios that could be attributed to assimilation of the newly introduced continental crust (NPCT) by mantle-derived magmas or to the addition of a sedimentary component to mantle-derived magmas.  相似文献   

17.
143Nd/144Nd,87Sr/86Sr and trace element results are reported for volcanic and plutonic rocks of the Aleutian island arc. The Nd and Sr isotopic compositions plot within the mantle array with εNd values of from 6.5 to 9.1 and87Sr/86Sr ratios of from 0.70289 to 0.70342. Basalts have mildly enriched light REE abundances but essentially unfractionated heavy REE abundances, while andesites exhibit a greater degree of light to heavy REE fractionation. Both the basalts and andesites have significant large ion lithophile element to light rare earth element (LILE/LREE) enrichments. Variations in the isotopic compositions of Nd and Sr are not related to the spatial distribution of volcanoes in the arc, nor are they related to temporal differences. εNd and87Sr/86Sr do not correlate with major element compositions but do, however, correlate with certain LILE/LREE ratios (e.g. BaN/LaN). Plutonic rocks have isotropic and trace element characteristics identical to some of the volcanic rocks. Rocks that make up the tholeiitic, calc-alkaline and alkaline series in the Aleutians do not come from isotopically distinct sources, but do exhibit some differing LILE characteristics.Given these elemental and isotopic constraints it is shown that the Aleutian arc magmas could not have been derived directly from homogeneous MORB-type mantle, or fresh or altered MORB subducted beneath the arc. Mixtures of partially altered MORB with deep-sea sediment can in principle account for the isotopic characteristics and most of the observed LILE/LREE enrichments. However, some samples have exceedingly high LILE/LREE enrichments which cannot be accounted for by sediment contamination alone. For these samples a more complex scenario is considered whereby dehydration and partial melting of the subducted slab, containing less than 8% sediment, produces a LILE-enriched (relative to REE) metasomatic fluid which interacts with the overlying depleted mantle wedge. The isotopic and LILE characteristics of the mantle are extremely sensitive to metasomatism by small percentages of added fluid, whereas major elements are not substantially effected, Major element compositions of Aleutian magmas are dominantly controlled by the partial melting of this mantle and subsequent crystal fractionation; whereas isotopic and LILE characteristics are determined by localized mantle heterogeneities.  相似文献   

18.
The Cenozoic volcanic rocks of eastern China are subalkalic to alkalic basalts erupted in an early Tertiary back-arc rift environment and from scattered late Tertiary and Quaternary volcanic centers in a continental area crossed by active faults, driven by subduction of the Pacific plate and the collision of India and Eurasia. Immobile trace elements and major elements conform very well to each other in classification of the 59 rocks for which complete data are reported and they correctly identify the tectonic setting. LIL-element enrichments of the basalts lie between those of P-MORB and ocean island alkalic basalts, and show a secular increase.87Sr/86Sr ratios of basalts vary from 0.7029 to 0.7048. Alkalic basalts are systematically less radiogenic than geographically coextensive and contemporaneous tholeiitic basalts. Increase of radiogenic Sr with increasing crustal thickness and crustal age and with silica enrichment of the magmas suggests crustal contamination but this is inadequate to explain the LIL-element enrichment patterns and variable LIL-element enrichments. The preferred hypothesis is that the alkalic magmas come from a deeper source, with long-term LIL-element depletion and low Rb/Sr ratio but relatively recent LIL-element enrichment. Conversely the tholeiitic magmas are melts of subcontinental mantle lithosphere that is more LIL-element depleted than the alkalic source, at the time of magma genesis, but has had an elevated Rb/Sr ratio for much of its post-consolidation history.  相似文献   

19.
We report Sr, Nd and Pb isotope ratios and parent and daughter element concentrations in 34 volcanic rocks from Samoa. The highly undersaturated post-erosional volcanics, which have erupted in Recent to Historic time along a 250-km-long fissure, have isotopic compositions that define fields distinct from those of the tholeiitic to alkalic lavas of the older Samoan shield volcanoes. Most shield lavas have206Pb/204Pb of 18.9–19.4,87Sr/86Sr of 0.7045–0.7055 and87Sr/86Sr (to 0.7075). In general, isotopic compositions of the shield lavas are similar to those of the Marquesas and Society Islands. Post-erosional samples have lower206Pb/204Pb and143Nd/144Nd and higher87Sr/86Sr than most shield lavas. The most striking feature of the post-erosional data is a negative correlation between207Pb/204Pb and206Pb/204Pb. This suggests that post-erosional lavas are derived from mixtures of the shield source and a high-207Pb/204Pb,87Sr/86Sr, low-206Pb/204Pb and143Nd/144Nd post-erosional source which may contain recycled ancient sediment. This enriched mantle domain may also underlie the Ontong-Java and Manihiki Plateaus to the north and west. Although both the Samoan shield and post-erosional lavas show chemical characteristics often associated with mantle plumes, only the shield volcanism can plausibly be related to a plume. The post-erosional eruptions appear to be the result of flexure and rifting due to plate bending at the northern termination of the Tonga Trench.  相似文献   

20.
Andesites from the Peruvian Andes and the Banda arc of Indonesia are characterized by unusually high and variable 87Sr/86Sr ratios. The Banda arc samples, including two cordierite-bearing lavas from Ambon, show a clear positive correlation between 87Sr/86Sr and δ18O. The andesitic rocks have δ18O values that range from 5.6 to 9.2‰. Over that range in δ18O, 87Sr/86Sr increases from 0.7044 to 0.7095. The cordierite-bearing lavas have δ18O values of approximately 15‰ and 87Sr/86Sr ratios of approximately 0.717. The similarity between δ18O values and 87Sr/86Sr ratios in total rocks and separated plagioclase phenocrysts of the Banda arc samples indicates that the measured isotope ratios are primary and have not been affected by secondary, low-temperature post-eruptive alteration. The observed variation between O and Sr isotopic ratios can be modeled by two-component mixing in which one component is of mantle isotopic composition. As the crust beneath the Banda arc is probably oceanic, contamination of the manle component may have resulted from the subduction of either continentally-derived sediments or continental crust. Mixing calculations indicate that the contaminant could have an isotopic composition similar to that observed in the cordierite-bearing lavas.The Andean samples, despite petrographic evidence of freshness, exhibit whole-rock δ18O values significantly higher than those of corresponding plagioclase phenocryst separates, indicating extensive low-temperature post-eruptive alteration. The plagioclase mineral separates show a range of δ18O values between 6.9 and 7.9‰. The 87Sr/86Sr ratios of these same samples are, in most instances, not significantly different from those measured for the whole rock, thus signifying that the phenocrysts and groundmass were in isotopic equilibrium at the time of eruption. Unlike the lavas of the Banda arc, the Andean lavas show no strong positive correlation between 87Sr/86Sr ratios and δ18O values, but instead lower 87Sr/86Sr ratios appear to be associated with higher δ18O values. The δ18O and 87Sr/86Sr values of the Peruvian samples are both slightly higher than those of “normal” island arc volcanics.The small proportions of contaminant implied by the O isotope results seem to preclude continental crustal contamination as a primary cause of high 87Sr/86Sr ratios. The most plausible process that can explain both O and Sr isotope results is one in which sediments of continental origin are partially melted in the subduction zone. These melts rise into overlying mantle material and subsequently participate in the formation of calc-alkaline magmas.If the involvement of a sialic component in the genesis of andesitic magma occurs in the subduction zone, melting of that sialic material signifies temperatures of at least 750–800°C at the top of the subducted lithospheric slab at depths of approximately 150 km. The fact that contamination has apparently occurred in the Banda arc samples without producing any simple widespread correlations between Sr and O isotopic compositions on the one hand and major or trace element abundances on the other, shows that isotopic correlations, possibly including pseudo-isochrons, can be produced by mixing without producing trace element mixing correlations. Because O versus Sr isotope correlations are little affected by processes of partial melting of differentiation, they provide a direct means of testing whether Sr isotopic variations in volcanic rocks are of mantle origin or are due instead to mixing with sialic material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号