首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用FeCl3的乙醇溶液刻蚀不锈钢网,进而用硬脂酸的二甲苯溶液对其进行表面修饰改性,制备具有疏水亲油表面的油水分离滤网。采用扫描电子显微镜(SEM)、红外光谱分析,接触角测试等方法对改性滤网表面进行表征,并进行油水分离实验。实验结果表明:刻蚀后的不锈钢滤网的钢丝表面粗糙度显著增大,经硬脂酸修饰后的不锈钢滤网与水的接触角达到146°,具有良好的疏水特性。改性后的滤网用于油水分离实验时,其分离效率在98%以上,分离速率快极,且具有良好的重复使用性能。  相似文献   

2.
普通棉织物表面呈亲水性,易被污染,不具备分离油水混合物的性能。受“荷叶效应”启发,以棉织物为基底,采用种子生长法在棉织物表面构筑1层纳米银膜,使用十八烷基硫醇修饰,制备出具有超疏水性能的棉织物表面并对其表面性能进行探究,并利用其对水和油相反的润湿性对油-水混合物进行分离测试。结果表明:其分离效率达96%,在连续重复分离22次后仍保持在94%以上;改性后的棉织物表面具有优良的超疏水性(其与水的接触角达160°,表面滚动角小于10°)、耐污性及稳定性,可作为一种有效的油水分离材料。  相似文献   

3.
以聚四氟乙烯乳液、聚乙烯醇和玻璃纤维为原料,采用冷冻铸造的方法制备了具有定向孔结构的油水分离材料。采用扫描电子显微镜(SEM)和接触角测量仪对所制备材料的微观结构及表面疏水特性进行表征,通过实验室自制的连续油水分离装置对所制备材料的油水分离性能进行研究。结果表明:所制备的材料具有规则排列的定向微米孔道结构,具有显著的疏水亲油特性,与水的接触角为140°。该材料具有良好的机械强度,在压差驱动下可以对油水混合物进行连续高效的分离。对包括柴油、汽油在内的8种油品和水的混合物进行测试,分离效率均达到98%以上。  相似文献   

4.
为了制备一种超疏水亲油材料基于纤维素可生物降解的环保特性,采用废棉制备了超疏水亲油的甲基三氯硅烷(MTCS)/mSiO2/纳米微晶纤维素(NCC)气凝胶。首先将废棉打碎酸解成NCC,再用KH560对SiO2进行改性,然后以NCC和mSiO2为原料,制备mSiO2/NCC复合气凝胶,最后以MTCS为疏水改性剂对m SiO2/NCC气凝胶改性,制备成超疏水亲油的MTCS/mSiO2/NCC气凝胶,并使用红外光谱仪、X射线衍射仪、扫描电子显微镜、接触角测试仪,对超疏水亲油材料的形貌、结构及表面浸润进行表征。结果表明:制备得到了一种三维多孔、结果稳定的超疏水亲油MTCS/m SiO2/NCC气凝胶,静态水接触角最高达150.97°,对食用油、机油和石蜡油的最大吸油倍率分别为60.00 g/g、58.15 g/g和43.27 g/g,能够快速分离油水混合物,具备良好的超疏水亲油性能。  相似文献   

5.
首先制备了单分散的二氧化硅微球,将其和聚酚胺(PCHA)一起修饰不锈钢网,并通过嫁接十八胺制备亲油疏水不锈钢网;通过嫁接四乙烯五胺和全氟辛酸制备亲水疏油不锈钢网。将两种网膜用于油水混合物的分离,结果表明,该网膜具有良好的油水分离性能。  相似文献   

6.
针对现有的吸油材料大多存在制备方法复杂、成本较高、吸油效率低等缺点,首先采用层层自组装方法,将β-FeOOH纳米棒沉积于软质聚氨酯表面,再利用聚二甲基硅氧烷对泡沫进行疏水改性,使聚氨酯泡沫表面具有超疏水超亲油的特性.经过β-FeOOH和聚二甲基硅氧烷改性的聚氨酯泡沫其水接触角达到142°,能够快速吸附水面上的油层.对不同油品的吸附倍率能达到自身重量的19~31倍,且在50次重复吸油后仍能保持稳定的高吸油倍率.  相似文献   

7.
含油废水的大量产生造成严重的环境污染,实现含油废水的高效油水分离引起社会的广泛关注。超疏水材料作为一种新型材料,对水和油的润湿性相反,具有高效分离油水污染物的能力。基于聚二甲基硅氧烷(PDMS)改性的方法制备了多功能性的超疏水织布。在紫外光[365 nm,(5.0±0.6)mW·cm-2]条件下,将化学性质稳定、机械性能良好的PDMS接枝到P25型二氧化钛钠米颗粒(P25 NPs)上,制备了无机-有机结合的超疏水涂层,将制备的涂层用于织布改性。改性织布具有超疏水性,能有效地分离油水混合物,分离效率大于99%,表现出良好的分离性能。将改性织布经过100次砂纸摩擦,100 h高温(150℃)处理,100 h低温(-20℃)处理以及紫外光照射100 h后也依然表现出稳定的超疏水性及油水分离效率。  相似文献   

8.
通过简易方法构建超疏水表面,以提高膜材料的疏水性和油水分离性能。以聚对苯二甲酸乙二醇酯(PET)无纺布为基底,以正辛基三乙氧基硅烷(NOEO)为改性剂,采用溶胶凝胶法在PET表面原位生长疏水二氧化硅(SiO_2)颗粒,一步制备PET-SiO_2-NOEO超疏水膜。结果表明:PET无纺布表面生长了疏水SiO_2颗粒,PET无纺布的表面形貌发生了变化,PET无纺布的疏水性能得以改善,处理后无纺布的水接触角为161.9°,且热稳定性有一定程度的提升;将PET-SiO_2-NOEO超疏水膜在pH 3~12、盐浓度5~45 g/L的含油污水(模拟)中浸泡24 h,水接触角仍保持在150°以上;PET-SiO_2-NOEO超疏水膜的油水分离效率为97%以上,表明PET-SiO_2-NOEO超疏水膜具备用于舱底水油水分离过程的应用潜力。  相似文献   

9.
将椰壳纤维经过碱处理、甲基三甲氧基硅烷(MTMS)疏水化改性制备了具有孔隙结构的疏水椰壳纤维吸附材料(HCF)。通过SEM、EDS、FT-IR、XRD对HCF的表面形貌及化学结构进行了表征,通过静态水接触角研究了HCF的表面润湿性能。结果表明,HCF的静态水接触角为126°,在不同pH的溶液中水接触角都保持在125°以上。HCF对原油、泵油、葵花籽油、机油、大豆油、四氯化碳等油类及有机溶剂的吸附倍率为8.49~12.88 g/g,在3 min内达到吸附饱和,具有较好的吸附量和较快的吸附速率。在0.09 MPa压力下,HCF可用于水上浮油的连续分离过程,分离通量为57 326.14 L/(m2·h),分离效率为97.02%,具有一定的处理大量油水混合物的能力。HCF经过10次循环后依然保持良好的吸附性能,具有很好的使用稳定性。  相似文献   

10.
以壳聚糖、纳米氧化硅为原料,以不锈钢筛网为基体,通过浸渍涂覆的方法制备了一系列改性筛网。用扫描电子显微镜、接触角测量仪对改性筛网进行表征,研究了纳米氧化硅质量分数、壳聚糖质量分数、涂覆次数等因素对改性筛网的水下亲水/疏油的性能的影响,并测试了分离效率。结果表明:改性筛网的水下接触角和分离效率在纳米氧化硅质量分数为2%时,均达到最大,分别为142°和99.24%;壳聚糖质量分数为0.36%时,改性筛网的水下接触角和分离效率均达到最大,分别为134°和98.91%;涂覆次数为3次时,水下接触角和分离效率均达到最大,分别为143°和99.43%。结果表明:制备的改性筛网具有良好的水下亲水疏油性能,可以用于油水分离。  相似文献   

11.
通过亲水剂和疏油剂对PTFE平板膜进行表面处理,制备亲水疏油PTFE平板膜。采用扫描电子显微镜、孔径测试分析仪、视频接触角仪、紫外分光光度计等对亲水疏油PTFE平板膜的表面形貌、孔径、亲水性以及油水分离性能进行测试,以分析疏油剂浓度及改性顺序对膜结构和性能的影响。结果表明:疏油剂浓度的增加有利于增强膜的油水分离性能和抗污性能;先疏油改性后亲水改性时PTFE平板膜对于机油乳化油分离效果较好,且当疏油剂浓度为3.0 wt%时,油水分离的综合性能最好,水通量为2668.5 L/(m~2·h),油分子截留率为87.4%,抗污染性能最好。  相似文献   

12.
为探究超疏水泡沫镍的稳定性及油水分离性能,采用一步电沉积法在泡沫镍表面制备超疏水膜.使用扫描电子显微镜表征膜层的微观形貌及生长过程机理,以能谱仪和X射线衍射仪分析膜层组成成分,以接触角测量仪测量疏水性能和稳定性能.结果表明,被修饰的泡沫镍基体接触角达到155.3°±5°,可以承受较好的物理冲击力,受模拟海水腐蚀影响较小...  相似文献   

13.
以苯乙烯-马来酸酐共聚物(PSMA)为原料,以N,N-二甲基甲酰胺为溶剂,在不锈钢网上通过静电纺丝法将不同质量浓度的静电纺丝液制备成无纺布状的PSMA膜,再通过喷涂氟碳表面活性剂(FS-51)改变膜对水和油的亲和性得到PSMA/FS-51膜;利用扫描电子显微镜和静态接触角等测试手段表征了所制备膜的微观形貌和表面润湿性。结果表明膜在喷涂氟碳表面活性剂后由超亲油性转变为超亲水性。当静电纺丝液质量浓度为0.45 g/mL时,获得的膜的纤维粗细最均匀,PSMA/FS-51膜的油水分离效率达到99%;当静电纺丝液质量浓度为0.50 g/mL时,制备的PSMA/FS-51膜的油水分离效率达到100%。此研究提供了一种工艺简单、高效的油水分离方法。  相似文献   

14.
高吸油性三聚氰胺泡沫的制备与性能研究   总被引:2,自引:0,他引:2  
为提供一种成本低廉、吸附能力强、制作简单的吸附材料,利用乙醇焰的高温快速-还原吸附在三聚氰胺上的氧化石墨烯,制备还原氧化石墨烯包覆的三聚氰胺泡沫(MF-G)。采用接触角、光电子能谱、扫描电子显微镜、万能试验机和吸附试验等研究手段,探讨MF-G泡沫的表面性质、孔结构、力学性质和吸附性能。结果表明:MF-G泡沫不仅具有高孔隙率和机械稳定性,而且还表现出超疏水性质,水在泡沫表面的接触角可达到148°;MF-G泡沫对油和有机溶剂具有优异的吸附能力,利用其对油和水显著的吸附差异,还可以高效率进行油水分离。MF-G泡沫具有的制备方法简单、高吸油性和有效的油水分离性使其有望在水处理领域实现广泛的应用。  相似文献   

15.
使用具有柔韧性的纳米M Xene材料包裹在微米纤维表面,制备基于涤棉织物的M Xene高效油水分离膜.将涤棉织物浸渍在离子液体中加热使得棉纤维处于溶胀状态,通过抽滤的方式使M Xene纳米片层积在涤棉织物上.棉纤维通过溶胀将M Xene纳米片有效固载在纤维表面获得优异的亲水性,使水分子在分离膜表面形成水膜,水分子可以快速顺利透过,并可以有效阻挡油的透过.使用环己烷、橄榄油、硅油、豆油与水的混合物测试油水分离性能与效果,结果表明,M Xene油水分离膜分离油水混合物的效率达98.4%,进行10次重复性实验后,仍保持较高的分离效率.通过此方法制备的膜具有高效的油水分离性能、耐酸碱性能以及可循环性.  相似文献   

16.
以偶氮二异丁腈为引发剂,以苯乙烯、马来酸酐和乙烯基三乙氧基硅烷为单体通过自由基聚合制备了具有偶联功能的苯乙烯-马来酸酐共聚物(f-PSMA);采用溶胶-凝胶法制备纳米SiO2;再使f-PSMA、纳米SiO2和氟碳表面活性剂(FS)通过分子间的作用力自组装制备PSMA/SiO2/FS复合材料;采用不锈钢网作为基底材料,通过浸泡法将PSMA/SiO2/FS复合材料涂覆到不锈钢网上,制备油水分离膜。分别通过傅里叶变换红外光谱和热失重表征了f-PSMA和纳米SiO2的结构和热性能;通过测试分离膜表面的接触角,探究了SiO2含量和成膜溶液的质量分数对膜表面润湿性的影响;最后,测试了复合物膜的油水分离效率和重复利用率。结果表明:当f-PSMA和SiO2的质量比为2∶1,成膜溶液的质量分数为10%时,复合物膜的初次油水分离效率达到100%,当重复分离20次后,油水分离效率仍在98.8%以上。  相似文献   

17.
石油泄漏已成为最严重的海洋污染问题,疏水型吸油海绵是有效的溢油清理材料之一. 通过溶液浸渍法,利用甲基三氯硅烷对密胺海绵进行了改性,使其具有疏水亲油性. 采用红外光谱、扫描电镜、水接触角对改性前后的密胺海绵进行表征. 研究了不同溶剂(甲苯、无水乙醇、乙醚、正己烷)及不同浸泡时间(0.5,1,5,15和30 min)对改性密胺海绵性能的影响. 结果表明,最佳改性条件为:密胺海绵在浓度为0.5%的甲基三氯硅烷的正己烷溶液中浸泡30 min,用二氯甲烷清洗并干燥. 改性后密胺海绵骨架包覆有疏水的硅烷偶联剂,测得改性海绵水接触角为143 °,吸柴油量为65 g/g. 该吸油材料制备方法具有反应条件温和、实验操作简单的优点.  相似文献   

18.
以硬脂酸为表面活性剂对采用配合物沉淀法自制的ZnO/Ag纳米复合材料进行了表面改性。系统研究了硬脂酸浓度、用量和改性时间等因素对改性效果的影响,并通过亲油度、接触角、透射电镜、红外及紫外-可见光谱等测试手段,对改性前后的ZnO/Ag纳米复合材料进行了表征。结果表明,采用乙醇加热回流法,用硬脂酸改性ZnO/Ag纳米复合材料能够提高其疏水性及对可见光的吸收能力。硬脂酸改性ZnO/Ag纳米复合材料的优选工艺条件是,硬脂酸浓度为0.010mol.L-1,添加量为10%(质量分数),改性时间为60min。改性后ZnO/Ag纳米复合材料的亲油度为76.47%,接触角为107.8°,其疏水性明显优于未改性材料。  相似文献   

19.
为探究金属表面超疏水现象对材料功能的影响,利用简单、低成本的酸刻蚀加氟硅烷修饰的方法,在6061铝合金基底上成功制备出了超疏水表面,并对其润湿性能、自清洁性能、耐腐蚀性能进行了测试。结果表明,制备的表面具有良好超疏水性能,水滴最大接触角达158.5°,滚动角小于5°。自清洁实验证明了水滴可以轻松地带走表面的微小灰尘颗粒。电化学测试表明超疏水表面有效地阻挡了腐蚀介质与金属基体的接触,显著提高了金属的耐腐蚀性能,为金属材料防腐蚀提供了新的思路。  相似文献   

20.
受纳米布沙漠甲壳虫水收集机制的启发,开发超亲水-超疏水相间的图案化绿色环保型仿生水收集材料。以大自然中的荷叶为Cassie超疏水基底,利用有机溶剂环己烷溶液预润湿超疏水荷叶的方法,将二氧化钛纳米颗粒和良性胶的混合物黏附在其表面上构建超亲水位点。研究了超亲水位点的数量对水收集效率的影响及最佳水收集效率,并具体分析了水雾收集过程。结果表明:当样品的超亲水面积占比为4.2%(9个超亲水位点),此仿生水收集材料具有最佳的水收集效率为(28.02 ± 0.1) mg·min-1·cm-2。该方法成功制备绿色环保型仿生水收集材料,为解决全球水资源短缺问题提供了新的思路,有望大范围应用于现实生产中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号