首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work was to study the growth characteristics of micro-plasma oxidation ceramic coatings on Ti-6Al-4V alloy. Compound ceramic coatings were prepared on Ti-6Al-4V alloy by pulsed micro-plasma oxidation (MPO) in NaAlO2 solution. The phase composition and surface morphology of the coating were investigated by X-ray diffractometry and scanning electron microscopy. The solution of Ti from the substrate and the content of Al in the electrolyte were studied by inductively coupled plasma-atomic emission spectrometer (ICP-AES) technique. Ti from the substrate dissolved and came into the coating and the electrolyte during MPO process. The content of Ti in the electrolyte under the pulsed bi-polar mode was more than that of the pulsed single-polar mode. The phase composition and structure of the coating was attributable to the space steric hindrance of Al congregated on the electrode surface due to the effect of the electric field and the electrolyte characters. For the pulsed single-polar mode, the coating was mainly composed of a large amount of α-Al2O3 and a small amount of γ-Al2O3. And the coating was mainly structured by Al from the electrolyte. However, the coating was composed of a large amount of Al2TiO5 and a little α-Al2O3 and rutile TiO2 for the pulsed bi-polar mode. And the coating was structured both by Ti from the substrate and Al from the electrolyte.  相似文献   

2.
The aim of this work is to study the effects of duty ratio on the growth mechanism of the ceramic coatings on Ti-6Al-4V alloy prepared by pulsed single-polar MPO at 50 Hz in NaAlO2 solution. The phase composition of the coatings was studied by X-ray diffraction, and the morphology and the element distribution in the coating were examined through scanning electron microscopy and energy dispersive spectroscopy. The thickness of the coatings was measured by eddy current coating thickness gauge. The corrosion resistance of the coated samples was examined by linear sweep voltammetry technique in 3.5% NaCl solution. The changes of the duty ratio (D) of the anode process led to the changes of the mode of the spark discharge during the pulsed single-polar MPO process, which further influenced the structure and the morphology of the ceramic coatings. The coatings prepared at D = 10% were composed of a large amount of Al2TiO5 and a little γ-Al2O3 while the coatings prepared at D = 45% were mainly composed of α-Al2O3 and γ-Al2O3. The coating thickness and the roughness were both increased with the increasing D due to the formation of Al2O3. The formation of Al2TiO5 resulted from the spark discharge due to the breakdown of the oxide film, while the formation of Al2O3 resulted from the spark discharge due to the breakdown of the vapor envelope. The ceramic coatings improved the corrosion resistance of Ti-6Al-4V alloy. And the surface morphology and the coating thickness determined the corrosion resistance of the coated samples prepared at D = 45% was better than that of the coated samples prepared at D = 10%.  相似文献   

3.
Ceramic coatings on the surfaces of Mg-9Al-1Zn (AZ91) magnesium alloy and Mg-9Al-1Zn-1Nd magnesium alloy (AZ91 magnesium alloy modified by neodymium, named as AZ91Nd in this paper) are synthesized in aluminate electrolyte by plasma electrolytic oxidation (PEO) process, respectively. X-ray diffraction and X-ray photoelectron spectroscopy analyses show the PEO coating on the Mg-9Al-1Zn-1Nd alloy comprises not only MgO and Al2O3, which are found in the coating on the AZ91 alloy, but also a trace amount of Nd2O3. Microstructure observations indicate the addition of Nd can decrease the sizes of β phases and form Al2Nd intermetallics in the AZ91 alloy. The fine β phases can effectively restrain the formation of unclosed-holes and greatly decrease the sizes of pores in the coating during the PEO process. In addition, the Al2Nd intermetallics can be completely covered due to the lateral growth of the PEO coatings formed on the α and β phases. As a result, the coating on the AZ91Nd alloy possesses a dense microstructure compared with that on the AZ91 alloy. The following corrosion tests indicate the corrosion resistance of the PEO coating on the AZ91Nd alloy is evidently higher than that of the PEO coating on the AZ91 alloy.  相似文献   

4.
The main purpose of this study is to develop trivalent chromium, Cr(III), conversion coatings on aluminum alloys. The influence of Cr(III) concentration and immersion time on structures and anticorrosive performance of the coatings has been investigated. Corrosion behaviors of the coatings were evaluated in a 0.5 M H2SO4 aqueous solution at room temperature using potentiodynamic polarization. The structure and valence state of the coatings were examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The addition of Cr(III) ions to the conversion bath considerably changes structures and compositions of the coatings. The coatings with Cr oxides possess a denser and thinner structure. Moreover, the corrosion resistance of Cr(III) coatings tends to decline with increasing immersion time due to the dissolution of coatings in the dipping period. According to XPS analysis, the Cr(III) conversion coatings are composed of Cr2O3, Cr(OH)3, Al2O3, Al(OH)3, ZrO2, Zr(OH)4, AlF3, and ZrF4, but no hexavalent chromium component in the coatings. The result indicates that the coatings prepared in the solution with 0.01 M Cr(III) for 5 min have the smoothest and densest structure and the best anticorrosive performance among all of conversion coatings in this work.  相似文献   

5.
Cerium oxide based coatings were prepared on AA2024 Al alloy by brush plating. The characteristic of this technology is that hydrogen peroxide, which usually causes the plating solution to be unstable, is not necessary in the plating electrolyte. The coating showed laminated structures and good adhesive strength with the substrate. X-ray diffraction and X-ray photoelectron spectroscopy analysis showed that the coatings were composed of Ce(III) and Ce(IV) oxides. The brush plated coatings on Al alloys improved corrosion resistance. The influence of plating parameters on structure and corrosion resistance of the cerium oxide based coating was studied.  相似文献   

6.
A novel super-hydrophobic coating was prepared by chemical modification on the anodized aluminum alloy surface. The surface structure was characterized by water contact angle measurement, scanning electron microscopy (SEM), and the composition was measured by X-ray photoelectron spectroscopy (XPS). The corrosion behavior of the super-hydrophobic coating was evaluated by the polarization curve and the electrochemical impedance spectroscopy (EIS). It was found that the static water contact angle on the surface of super-hydrophobic coating was as high as 167.7 ± 1.2°, and the sliding angle was 5°. The super-hydrophobic coating resulted in excellent corrosion resistance property and the super-hydrophobic coating showed a good stability.  相似文献   

7.
In laser processes, the absorption factor of laser Nd:YAG by metals plays a very important role. In order to model laser welding, we need to know its evolution during the process. The theoretical calculation does not enable the prediction of the absorption factor in the case of a keyhole mode. It is difficult to predict the effect of plasma and recoil pressure on the shape of the keyhole. In this paper, an integrating sphere is used to determine the absorption factor during the laser process, which is carried out on two types of magnesium alloys (WE43 and RZ5) and an aluminum alloy. We obtain the evolution in time of the absorption factor according to different steps of the evolution of the keyhole.  相似文献   

8.
In this paper, ultrasonic irradiation was utilized for improving the corrosion resistance of phosphate coatings on aluminum alloys. The chemical composition and morphology of the coatings were analyzed by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The effect of ultrasonic irradiation on the corrosion resistance of phosphate coatings was investigated by polarization curves and electrochemical impedance spectroscopy (EIS). Various effects of the addition of Nd2O3 in phosphating bath on the performance of the coatings were also investigated. Results show that the composition of phosphate coating were Zn3(PO4)2 · 4H2O(hopeite) and Zn crystals. The phosphate coatings became denser with fewer microscopic holes by utilizing ultrasonic irradiation treatment. The addition of Nd2O3 reduced the crystallinity of the coatings, with the additional result that the crystallites were increasingly nubby and spherical. The corrosion resistance of the coatings was also significantly improved by ultrasonic irradiation treatment; both the anodic and cathodic processes of corrosion taking place on the aluminum alloy substrate were suppressed consequently. In addition, the electrochemical impedance of the coatings was also increased by utilizing ultrasonic irradiation treatment compared with traditional treatment.  相似文献   

9.
The microstructure, composition and corrosion performance of oxide coatings formed on AM60B alloy using microarc oxidation techniques at different waveforms of applied current densities were investigated within this study. It is found that the use of optimizing current density waveforms, i.e. decaying freely current density in the later stage and stepped decreasing current density, significantly improved the microstructure of oxide coatings compared with the constant current density mode, which are connected with changes in behaviors of spark discharges on the surface in oxidation process. The optimal waveform of current density is showed to be decaying freely current density in the later stage, which results in sealing the originally formed large micropores. The optimisation of the microstructure results in a significant improvement of the corrosion resistance of oxide coating.  相似文献   

10.
Abstract

To investigate the amorphous-crystalline microstructure on the tribocorrosion of bulk metallic glasses (BMGs), 6 mm diameter rods of Cu46-xZr47Al7Agx (x = 0, 2, 4) amorphous-forming alloys with in situ crystalline and amorphous phases were fabricated by arc-melting and Cu-mould casting. Using a pin-on-disc tribometer, the tribo-pair composed by CuZr-based amorphous-forming alloys and AISI 52100 steel were studied in 3.5% NaCl solution. With the increase of Ag content from 0 to 4 at.%, the compressive fracture strength and the average hardness decrease firstly and then increase. Moreover, 4 at.% Ag addition increases the amount of amorphous phase obviously and inhibits the formation of brittle crystalline phase, resulting in the improvement of corrosion resistance and the corrosive wear resistance. The primary wear mechanism of the BMG composites is abrasive wear accompanying with corrosive wear. The tribocorrosion mass loss of Cu42Zr47Al7Ag4 composite is 1.5 mg after 816.8 m sliding distance at 0.75 m s?1 sliding velocity under 10 N load in NaCl solution. And the volume loss evaluated from the mass loss is about 20 times lower than that of AISI 304 SS. Thus, Cu42Zr47Al7Ag4 composite may be a good candidate in the tribology application under marine environment.  相似文献   

11.
The application of titanium aluminide orthorhombic alloys (O-phase alloys) as potential materials in aircraft and jet engines was limited by their poor oxidation resistance at high temperature. The Ti2AlNb-based alloys were chromised (Cr), chromium-tungstened (Cr-W) and nickel-chromised (Ni-Cr) by the double glow plasma surface alloying process to improve their high temperature oxidation resistance. The discontinuous oxidative behavior of Cr, Cr-W and Ni-Cr alloyed layers on Ti2AlNb-based alloy at 1093 K was explored in this study. After exposing at 1093 K, the TiO2 layer was formed on the bare alloy and accompanied by the occurrence of crack, which promoted oxidation rate. The oxidation behavior of Ti2AlNb-based alloys was improved by surface alloying due to the formation of protective Al2O3 scale or continuous and dense NiCr2O4 film. The Ni-Cr alloyed layer presented the best high-temperature oxidation resistance among three alloyed layers.  相似文献   

12.
Fe-Al-Si in situ composite coating was fabricated on the surface of ASTM A283Gr.D steel by laser cladding with the preplaced powder. The influence of powder composition, laser power and scanning speed on microstructure, microhardness and wear resistance were investigated in this paper. The results show that Fe-Al-Si in situ composite coating with the good metallurgical bond mainly consists of Fe, SiO2 and Al2Fe3Si4 intermetallic compound. With the increase of laser power and scanning speed, the grain size of coating gets the minimum value. With the increase of laser power and scanning speed, microhardness and wear resistance both get the peak vaule, and their value are three times and 3.5 times those of substrate, respectively. The optimum parameters are followed as: the ratio of the preplaced composite powder: 8:1:1, laser power: 1600 W and scanning speed: 400 mm/min.  相似文献   

13.
6061 aluminum alloy was treated by MAO at various temperatures of the alkali silicate electrolyte using pulsed bipolar current mode for ten minutes. The surface microstructures and properties were studied using SEM, EDX, and XRD. The infrared emissivities of the MAO ceramic coatings were measured at the 70 °C using FTIR spectrometer. The electrolyte temperature strongly affected all the surface properties. The MAO alumina ceramics prepared in cold electrolytes have volcano-like and accumulated particles microstructures, while those prepared in hot electrolytes were: rougher, thinner and contained grainy spherical hollow bulgy microstructures with more pore density and more sillimanite and cristobalite phases which enhanced the IR emissivity. Also, the increment of sillimanite and cristobalite phases moved the apparent peaks toward longer wavelengths, and broadened the opaque region of the IR spectra. As a result, the increment of electrolyte temperature from 12.3 °C to 90.5 °C increased the average of LWIR emissivity from 80.4% to 94.4%, respectively, for the MAO ceramic coatings.  相似文献   

14.
Ceramic oxide coatings (titania) were produced on Ti by micro-arc oxidation in different aluminate and carbonate based electrolytes. This process was conducted under constant pulsed DC voltage condition. The effect of KOH and NaF in aluminate based solution was also studied. The surface morphology, growth and phase composition of coatings were investigated using scanning electron microscope and X-ray diffraction. Corrosion behavior of the coatings was also examined by potentiodynamic polarization and electrochemical impedance spectroscopy. It was found that the sparking initiation voltage (spark voltage) had a significant effect on the form and properties of coatings. Coatings obtained from potassium aluminate based solution had a lower spark voltage, higher surface homogeneity and a better corrosion resistance than the carbonate based solution. Addition of NaF instead of KOH had improper effects on the homogeneity and adhesion of coatings which in turn caused a poor corrosion protection behavior of the oxide layer. AC impedance curves showed two time constants which is an indication of the coatings with an outer porous layer and an inner compact layer.  相似文献   

15.
Anodic coatings were prepared by using microarc oxidation (MAO) on AZ91HP in silicate containing solution (Si-solution) and phytic acid containing solution (P-solution), respectively. The influence of the electrolytes on coating structure, morphology and composition was studied by using X-ray diffraction (XRD), environmental scanning electron microscope (ESEM) and energy dispersive X-ray spectroscopy (EDX). Potentiodynamic polarization test and immersion test were employed to evaluate the corrosion resistance of anodic coatings. Different electrolytes caused the differences in the MAO process and coating properties. The breakdown voltage and the final voltage in P-solution were higher than those in Si-solution. The pore uniformity of anodic coatings obtained in Si-solution (Si-film) was worse than that in P-solution (P-film). XRD analyses indicated that Si-film was amorphous, while P-film consisted of MgO. The corrosion resistance of the sample coated with P-film was better than that with Si-film.  相似文献   

16.
Laser cladding of the Al + TiC alloy powder on Ti-6Al-4V alloy can form the Ti3Al/TiAl + TiC ceramic layer. In this study, TiC particle-dispersed Ti3Al/TiAl matrix ceramic layer on the Ti-6Al-4V alloy by laser cladding has been researched by means of X-ray diffraction, scanning electron microscope, electron probe micro-analyzer, energy dispersive spectrometer. The main difference from the earlier reports is that Ti3Al/TiAl has been chosen as the matrix of the composite coating. The wear resistance of the Al + 30 wt.% TiC and the Al + 40 wt.% TiC cladding layer was approximately 2 times greater than that of the Ti-6Al-4V substrate due to the reinforcement of the Ti3Al/TiAl + TiC hard phases. However, when the TiC mass percent was above 40 wt.%, the thermal stress value was greater than the materials yield strength limit in the ceramic layer, the microcrack was present and its wear resistance decreased.  相似文献   

17.
The inhibition effect of Schiff bases benzylidene-(2-methoxy-phenyl)-amine (A), (2-methoxy-phenyl)-(4-methyl-benzylidene)-amine (B), (4-chloro-benzylidene)-(2-methoxy-phenyl)-amine (C) and (4-nitro-bezylidene)-(2-methoxy-phenyl)-amine (D) on the corrosion of aluminum in 1 M HCl has been studied by polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurements. It has been found that all the studied Schiff bases are excellent inhibitors. Maximum inhibition was obtained for 0.01 M Schiff base A. Results show that the inhibition efficiency increases with decreasing in temperature and increasing in concentration of Schiff base. Polarization curves reveal that the used inhibitors are mixed type inhibitors. The surface adsorption of the Schiff bases leads to a decrease of double layer capacitance as well as an increase of polarization resistance. The inhibitor performance depends strongly on the type of function groups substituted on benzene ring. The adsorption of used compounds on the aluminum surface obeys a Langmuir isotherm and has a physical mechanism. Thermodynamic parameters for both dissolution and adsorption processes were determined. The quantum chemical study of the corrosion inhibition efficiency of the Schiff bases on Al in molar HCl was carried out.  相似文献   

18.
In this work, we present a surface study by SFM (scanning force microscopy) of three new Ti alloys of composition (in wt%) Ti-7Nb-6Al, Ti-13Nb-13Zr and Ti-15Zr-4Nb, developed for biomedical applications. V was not included in these alloys since this element has been reported to be cytotoxic. The surface of these materials has been modified by a thermal treatment in air at 750 °C for different times. As a consequence of this treatment an oxide layer develops on the surface, resulting in both an improvement of the corrosion resistance and an increase of the roughness, which enhances the adhesion of the tissue cells to the implant. SFM has been used to characterize the surface structure and topography of the oxide layers grown on the three alloys. The surface roughness analysis obtained by SFM points to a correlation between the mean square roughness, the thickness of the oxide layer, and the α-phase/β-phase ratio in the base material.  相似文献   

19.
The objective of this study was to gain understanding of the preignition oxidation of Al powders in CO2. The thermal behavior and reaction energy was studied using simultaneous thermogravimetric analysis and differential scanning calorimetry (TG–DSC). The particle morphology was examined at different stages of the process using field emission gun scanning electron microscopy (FEG-SEM) and transmission electron microscopy (TEM). The corresponding chemical changes were analyzed by X-ray diffraction spectrometry (XRD) and energy dispersion X-ray spectrometry (EDS). Dimensional properties of Al particles have a significant influence on the oxidation processes. Distinctly different properties were shown between nm-Al and μm-Al, where the reactions are found to occur at different temperature ranges. The powder behavior is controlled by the oxide layer that coats each particle and prevents exposure of the metal core to the reactive CO2 gas. The properties of the oxide layer are related to the particle size. Carbon has been shown to play an important role in the reacting Al–CO2 system. A new mechanism of nano-Al particle oxidation in CO2 under gradually increasing temperature was proposed.  相似文献   

20.
The oxidation of aluminum single crystals is studied using molecular dynamics (MD) simulations with dynamic charge transfer between atoms. The simulations are performed on three aluminum low-index surfaces ((1 0 0), (1 1 0) and (1 1 1)) at room temperature. The results show that the oxide film growth kinetics is independent of the crystallographic orientation under the present conditions. Beyond a transition regime (100 ps) the growth kinetics follow a direct logarithmic law and present a limiting thickness of ∼3 nm. The obtained amorphous structure of the oxide film has initially Al excess (compared to the composition of Al2O3) and evolves, during the oxidation process, to an Al percentage of 45%. We observe also the presence of an important mobile porosity in the oxide. Analysis of atomistic processes allowed us to conclude that the growth proceeds by oxygen atom migration and, to a lesser extent, by aluminum atoms migration. In both cases a layer-by-layer growth mode is observed. The results are in good agreement with both experiments and earlier MD simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号