首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The ridgelines of mountain ranges are a source of geomorphic information unadulterated by the arrival of sediment from upslope. Studies along ridgecrests, therefore, can help identify and isolate the controls on important regolith properties such as thickness and texture. A 1.5 km section of ridgeline in the Sierra Nevada (CA) with a tenfold decrease in erosion rate (inferred from ridgetop convexity) provided an opportunity to conduct a high‐resolution survey of regolith properties and investigate their controls. We found that regolith along the most quickly eroding section of the ridge was the rockiest and had the lowest clay concentrations. Furthermore, a general increase in regolith thickness with a slowing of erosion rate was accompanied by an increase in biomass, changes in vegetation community, broader ridgeline profiles, and an apparent increase in total available moisture. The greatest source of variation in regolith thickness at the 10–100 m scale, however, was the local topography along the ridgeline, with the deepest regolith in the saddles and the thinnest on the knobs. Because regolith in the saddles had higher surface soil moisture than the knobs, we conclude that the hydrological conditions primarily driven by local topography (i.e. rapid vs. slow drainage and water‐storage potential) provide the fundamental controls on regolith thickness through feedbacks incorporating physical weathering by the biota and chemical weathering. Moreover, because the ridgeline saddles are the uppermost extensions of first‐order valleys, we propose that the fluvial network affects regolith properties in the furthest reaches of the watershed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
    
Recent studies provide a theoretical framework for understanding the incision of bedrock rivers by plucking. These studies motivated the development of a numerical model that simulates plucking to explore the evolution of channel profiles in lithologically diverse terrain. In the main governing equation, the incision rate is calculated as a function of the difference between the boundary shear stress and a threshold shear stress needed to entrain blocks from the bed. Because an earlier study suggested that plucking is the primary incisional process in the northern Sierra Nevada (CA), the model was calibrated to approximate the conditions in the region. The profiles of the simulated rivers are stair-stepped, with sharp breaks-in-slope at lithological boundaries. This characteristic is common to rivers draining the northern Sierra Nevada, suggesting that the size of blocks available for plucking, as mediated by the fracture density, may be the primary control on their gradients. Moreover, the numerical experiments highlight the role of threshold shear stresses in the post-orogenic persistence of steep reaches and relict terrain. Finally, comparisons of profiles evolved under tilting or uniform uplift scenarios provide insights into how these different uplift modes affect profile evolution. For example, whereas uniform uplift generates a single migrating knickpoint at the range front, multiple migrating knickpoints can form simultaneously along a river in a tilting landscape. © 2020 John Wiley & Sons, Ltd.  相似文献   

3.
Small left-lateral strike-slip faults and right-lateral monoclinal kink bands with subvertical fold axes may be related to the formation of a very large right-lateral kink band (Bear Creek kink band), about 8 km wide and at least 15 km long, trending N27W along Bear Creek Valley in the Mt. Abbot quadrangle, Sierra Nevada, California.A foliation within Bear Creek Valley is defined by vertical slabs of granodiorite bounded by joints and faults. Small strike-slip faults and larger fault zones have nucleated along preëxisting joints and accommodated shearing between granodiorite slabs. The orientations of small cracks that occur near the tips of faults or connect adjacent fault segments indicate that the direction of maximum compression was about 20° counterclockwise from traces of joints at the time the faults nucleated. In some places where faults are closely spaced there are small, right-lateral kink bands with widths of 1 to 20 m. The slabs of granodiorite are gently curved through the kink bands, and analysis of the orientations of slabs in the limbs of the small kink bands indicates that the direction of maximum compression during kink-band formation was 15° to 20° counterclockwise from the traces of faults outside the kink bands. The orientation of the maximum compression for the formation of the small cracks at tips of many strike-slip faults and for the formation of the small kink bands, relative to the orientation of the maximum compression inferred from the joints on the limb of Bear Creek kink band, suggests that the foliation within the Bear Creek Valley has reoriented a maximum of 40° to 60° clockwise. Although the various orientations of joints, faults, and kink bands could be explained in terms of different regional compression directions at different places and at different times in the Mt. Abbot quadrangle, a much simpler interpretation, based on analysis of large and small structures in the granodiorite in Bear Creek Valley, is that they all formed in response to one maximum regional compression in the direction N25E.  相似文献   

4.
Abstract

This study presents an analysis of three hydrological years (2007/08, 2008/09 and 2009/10) of precipitation, runoff and sediment yield collected from a small (669.7 ha) semi-arid watershed in southeastern Spain (Lanjarón). At the watershed outlet the runoff, suspended sediment concentration, total solute concentrations and dissolved nutrients (N-NO3, N-NH4, H2PO4 and K) in streamflow were continuously monitored. The runoff was highly variable, ranging between 53.4 and 154.7 mm year?1, with an average of 97.6 mm year?1. In contrast, sediment yields were more regular, averaging 1.8 Mg ha?1 year?1. The hydrological response of the watershed depended mainly on rainfall intensity. Formerly, 32% of the watershed was forested and runoff was more regular, despite the typical Mediterranean rainfall cycle; however, due to forest area reduction to 17% and the increase in abandoned farmland area (18%) in recent decades, the runoff variability has increased. Greater amounts of solutes (32.7 Mg ha?1 year?1) were exported, so that this water is considered as poor for irrigation use. The temporal nutrient export was related to seasonal discharge fluctuations as well as daily concentrations. In addition, the nutrient concentrations of the water discharged were lower than threshold limits cited in water-quality standards for agricultural use and for potable water, with the exception of K (65.9 mg L?1), which may degrade surface waters as well as irrigated soils. Thus, hydrological and erosive processes depended on the watershed features, but also on prior conditions in combination with the characteristics of rainfall episodes.

Citation Durán, Z.V.H., Francia, M.J.R., Garcia, T.I., Rodríguez, P.C.R., Martínez, R.A., and Cuadros, T.S., 2012. Runoff and sediment yield from a small watershed in southeastern Spain (Lanjarón): implications for water quality. Hydrological Sciences Journal, 57 (8), 1610–1625.  相似文献   

5.
    
We observed polymictic behaviour in stream pools in Long Meadow, Sequoia National Park, California—part of the Southern Sierra Critical Zone Observatory. Stream pools stratified thermally during the day time and were isothermal at night—this pattern persists from the middle of summer into the fall. We found that four characteristics typical of a mountain meadow environment—low stream flow, open sky, cold groundwater discharge, and elevated organic carbon concentrations—are particularly conducive to pool stratification. Incoming shortwave radiation was the dominant energy input to heat pool water while nighttime emitted longwave radiation was the major cooling mechanism. Relatively cold groundwater discharge into the pool bottom increased density stratification within the pool. Elevated DOC concentrations increased the capacity of the pool to absorb photosynthetically active radiation and also promoted stratification. Stream velocities in the meadow were generally insufficient to meet threshold Richardson numbers and mix the pools during the daytime; smaller stream cross sectional areas would have potential for destabilizing pools in the daytime. We propose a conceptual model for describing polymictic stream pools and assessing the potential for polymictic pools to occur. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
    
Forest biomass reductions in overgrown forests have the potential to provide hydrologic benefits in the form of improved forest health and increased streamflow production in water-limited systems. Biomass reductions may also alter evaporation. These changes are generated when water that previously would have been transpired or evaporated from the canopy of the removed vegetation is transferred to transpiration of the remaining vegetation, streamflow, and/or non-canopy evaporation. In this study, we combined a new vegetation-change water-balance approach with lumped hydrologic modelling outputs to examine the effects of forest biomass reductions on transpiration of the remaining vegetation and streamflow in California's Sierra Nevada. We found that on average, 102 mm and 263 mm (8.0% and 20.6% of mean annual precipitation [MAP]) of water were made available following 20% and 50% forest biomass-reduction scenarios, respectively. This water was then partitioned to both streamflow and transpiration of the remaining forest, but to varying degrees depending on post-biomass-reduction precipitation levels and forest biomass-reduction intensity. During dry periods, most of the water (approximately 200 mm [15.7% on MAP] for the 50% biomass-reduction scenario) was partitioned to transpiration of the remaining trees, while less than 50 mm (3.9% on MAP) was partitioned to streamflow. This increase in transpiration during dry periods would likely help trees maintain forest productivity and resistance to drought. During wet periods, the hydrologic benefits of forest biomass reductions shifted to streamflow (200 mm [15.7% on MAP]) and away from transpiration (less than 150 mm [11.8% on MAP]) as the remaining trees became less water stressed. We also found that streamflow benefits per unit of forest biomass reduction increased with biomass-reduction intensity, whereas transpiration benefits decreased. By accounting for changes in vegetation, the vegetation-change water balance developed in this study provided an improved assessment of watershed-scale forest health benefits associated with forest biomass reductions.  相似文献   

7.
    
The degree of glacial modification in small catchments along the eastern Sierra Nevada, California, controls the timing and pattern of sediment flux to the adjacent fans. There is a close relationship between the depth of fan‐head incision and the pattern and degree of Late Pleistocene catchment erosion by valley glaciers; catchments with significant glacial activity are associated with deeply incised fan heads, whereas fans emerging from glacially unmodified catchments are unincised. We suggest that the depth of fan‐head incision is controlled by the potential for sediment storage during relatively dry ice‐free periods, which in turn is related to the downstream length of the glacially modified valley and creation of accommodation through valley floor slope lowering and glacial valley overdeepening and widening. Significant storage in glacially modified basins during ice‐free periods leads to sediment supply‐limited conditions at the fan head and causes deep incision. In contrast, a lack of sediment trapping allows quasi‐continuous sediment supply to the fan and prevents incision of the fan head. Sediment evacuation rates should thus show large variations in glacially modified basins, with major peaks during glacial and lows during interglacial or ice‐free periods, respectively. In contrast, sediment removal from glacially unmodified catchments in this type of setting should be free of this effect, and will be dominated instead by short‐term variations, modulated for example by changes in vegetation cover or storm frequency. This distinction may help improve our understanding of long‐term sediment yields as a measure of erosional efficiency. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
    
Climate variability during the Mid‐Late Holocene has influenced the activity of geomorphic processes in the current periglacial belt of the Sierra Nevada. We studied two types of sedimentary records that reveal a synchronous timing for slope instability in this high semi‐arid massif: solifluction landforms and mountain lake sediments. Lithological and sedimentological properties of both records have recorded numerous cycles of different magnitude of slope processes in the massif. Solifluction deposits record seven phases of solifluction activity and soil development during the last 7 ka bp and lake sediments show evidence of eight periods with increased geomorphic activity in the catchments over the last 6 ka bp . Although present‐day climate conditions do not promote active solifluction processes in the Sierra Nevada, colder and wetter periods during the Holocene triggered solifluction and transported coarse‐grained sediments into the lakes. By contrast, warm phases favoured soil formation and spread an incipient vegetation cover over the headwaters of the highest valleys, diminishing the grain size of the particles reaching the lakes. Lake sediments record an aridification trend in the massif intensifying since 4·2 ka bp that has conditioned solifluction activity to shift gradually to higher elevations. During major cooler phases such as the Little Ice Age active solifluction was recorded back down to 2500 m altitude. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
An empirical evaluation of glacial trough cross-section shape is performed on seven vertical cross-sections in three Sierra Nevada valleys glaciated during the late Quaternary. Power and second-order polynomial functions are fitted by statistical regression. Power functions are very sensitive to subtle valley-bottom topographic features and require precise specification of the valley-bottom-centre location. This dependency is problematic given under-representation of valley bottoms by conventional contour-sampling methods, and the common alteration of valley-bottom morphology by non-glacial processes. Power function exponents vary greatly in response to these and other non-genetic factors and are not found to be reliable indicators of overall valley morphology. Second-order polynomials express overall valley shape in a single robust function. They are applied to both bedrock- and sediment-floored glacial valleys with negligible statistical bias except where side-slopes are stepped or convex-upward or where valley form is asymmetrical. They can describe alluviated or severely eroded valleys, and can objectively identify indi-vidual components of polymorphic valleys, because valley bottom and centre locations need not be specified. Mathematical expressions of parameters useful for geomorphic measurements and glaciological modelling are analytically derived from the polynomials as functions of the three polynomial coefficients. These parameter equations provide estimates of valley side-slopes, mean and maximum depth, midpoint location, width, area, boundary length, form ratio and symmetry.  相似文献   

10.
    
In Sawmill Canyon, located near the eastern margin of the Tuolumne batholith, central Sierra Nevada, California, a series of petrologically and structurally complex, magmatic sheeted zones intrude older granodioritic units (Kuna Crest and equigranular Half Dome) and in one case truncate these units along a sharp contact. These sheeted zones (a) consist of numerous batches of (now frozen) magma, (b) display clear outward growth directions, (c) were actively deforming during and after emplacement resulting in magmatic folds, faults and multiple magmatic mineral fabrics, and (d) are the location of numerous, but localized magma flow structures (schlieren-bounded tubes, troughs, megacryst-rich pipes) and instabilities (load casts, flame structures, slumps, diapirs, ridge and pillar structures). Geochemical data indicate that the sheeted zones largely consist of magmas derived from the Half Dome granodiorite with some late Cathedral Peak granodiorite pulses, and with fractionation and flow sorting forming widespread layering in the above structures.  相似文献   

11.
    
The Kings River Experimental Watersheds (KREW) were established in 2002 to expand our knowledge of catchment physical, chemical, and biological processes in Sierra Nevada headwater forests, and to better understand the impacts of prescribed burning and forest thinning on these processes. Two elevation strata (high and low) were selected for the KREW sites, with four independent catchments and one nested catchment within each stratum. Both high and low elevation study areas were instrumented for continuous measurements of meteorology, streamflow, and turbidity. Atmospheric and stream chemistry, suspended sediment concentration, and bedload sediment delivery were measured on a regular schedule. Soil chemical and physical properties and vegetation were systematically sampled before and after the initial thinning and prescribed burning treatments, which were implemented between 2012 and 2016. Post-treatment data collection continues today as we explore opportunities for the second round of possible treatments. The critical research infrastructure and long-term baseline data collection has been instrumental in building partnerships with downstream managers, end users, non-governmental organizations, academic researchers, and national research programmes. Contributions to date include fundamental understanding of magnitude and variability of nutrient deposition; carbon, nutrient, and major ion dynamics in headwater streams; aquatic algae and macroinvertebrate populations; vegetation composition and structure; and streamflow responses to precipitation in the two elevation strata. Data from the experimental watersheds also support calibration and validation of diverse hydrologic models used for water resources planning.  相似文献   

12.
    
Snow accumulation and melt is highly variable in space and time in complex mountainous environments. Therefore, it is necessary to provide high‐resolution spatially and temporally distributed estimates of sub‐basin snow water equivalent (SWE) to accurately predict the timing and magnitude of snowmelt runoff. In this study, we compare two reconstruction techniques (a commonly used deterministic reconstruction vs a probabilistic data assimilation framework). The methods retrospectively estimate SWE from a time series of remotely sensed maps of fractional snow‐covered area (FSCA). In testing both methods over the Tokopah watershed in the Sierra Nevada (California), the probabilistic reconstruction approach is shown to be a more robust generalization of the deterministic reconstruction. Under idealized conditions, both probabilistic and deterministic approaches perform reasonably well and yield similar results when compared with in situ verification data, whereas the probabilistic reconstruction was found to be in slightly better agreement with snow‐pit observations. More importantly, the probabilistic approach was found to be more robust: unaccounted for biases in solar radiation impacted the probabilistic SWE estimates less than the deterministic case (4% vs 7% errors for water year (WY)1997 and 0% vs 3% errors for WY1999); the probabilistic reconstruction was found to be less sensitive to the number of available observations (6% vs 10% errors in WY1997 and 13% vs 44% errors in WY1999 from the nominal cases when four fewer FSCA images were available). Finally, results from the probabilistic reconstruction approach, which requires precipitation inputs (unlike the deterministic approach), were found to be relatively robust to bias in prior precipitation estimates, where the nominal case mean estimates were recovered even when an underestimated prior precipitation was used. The additional robustness of the probabilistic SWE reconstruction technique should prove useful in future applications over larger basins and longer periods in mountainous terrain. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
    
Processes controlling streamflow generation were determined using geochemical tracers for water years 2004–2007 at eight headwater catchments at the Kings River Experimental Watersheds in southern Sierra Nevada. Four catchments are snow‐dominated, and four receive a mix of rain and snow. Results of diagnostic tools of mixing models indicate that Ca2+, Mg2+, K+ and Cl? behaved conservatively in the streamflow at all catchments, reflecting mixing of three endmembers. Using endmember mixing analysis, the endmembers were determined to be snowmelt runoff (including rain on snow), subsurface flow and fall storm runoff. In seven of the eight catchments, streamflow was dominated by subsurface flow, with an average relative contribution (% of streamflow discharge) greater than 60%. Snowmelt runoff contributed less than 40%, and fall storm runoff less than 7% on average. Streamflow peaked 2–4 weeks earlier at mixed rain–snow than snow‐dominated catchments, but relative endmember contributions were not significantly different between the two groups of catchments. Both soil water in the unsaturated zone and regional groundwater were not significant contributors to streamflow. The contributions of snowmelt runoff and subsurface flow, when expressed as discharge, were linearly correlated with streamflow discharge (R2 of 0.85–0.99). These results suggest that subsurface flow is generated from the soil–bedrock interface through preferential pathways and is not very sensitive to snow–rain proportions. Thus, a declining of the snow–rain ratio under a warming climate should not systematically affect the processes controlling the streamflow generation at these catchments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
    
Snow availability in Alpine catchments plays an important role in water resources management. In this paper, we propose a method for an optimal estimation of snow depth (areal extension and thickness) in Alpine systems from point data and satellite observations by using significant explanatory variables deduced from a digital terrain model. It is intended to be a parsimonious approach that may complement physical‐based methodologies. Different techniques (multiple regression, multicriteria analysis, and kriging) are integrated to address the following issues: We identify the explanatory variables that could be helpful on the basis of a critical review of the scientific literature. We study the relationship between ground observations and explanatory variables using a systematic procedure for a complete multiple regression analysis. Multiple regression models are calibrated combining all suggested model structures and explanatory variables. We also propose an evaluation of the models (using indices to analyze the goodness of fit) and select the best approaches (models and variables) on the basis of multicriteria analysis. Estimation of the snow depth is performed with the selected regression models. The residual estimation is improved by applying kriging in cases with spatial correlation. The final estimate is obtained by combining regression and kriging results, and constraining the snow domain in accordance with satellite data. The method is illustrated using the case study of the Sierra Nevada mountain range (Southern Spain). A cross‐validation experiment has confirmed the efficiency of the proposed procedure. Finally, although it is not the scope of this work, the snow depth is used to asses a first estimation of snow water equivalent resources.  相似文献   

15.
 The Middle Jurassic Tuttle Lake Formation in the northern Sierra Nevada, California, comprises a thick volcaniclastic sequence deposited in a submarine island-arc setting and penetrated by numerous related hypabyssal intrusions. A composite andesite-diorite intrusive complex ≥4.5 km long and ≥1.5 km thick was emplaced while the host Tuttle Lake sediments were still wet and unconsolidated. Large parts of the intrusive complex consist of peperite formed where andesitic magma intruded and intermixed with tuff, lapilli-tuff and tuff-breccia. The southern half of the complex consists of augite-phyric andesite containing peperite in numerous small, isolated pockets and in more extensive, laterally continuous zones. The peperites comprise three main types recognized previously in other peperite studies. Fluidal peperite consists of small (≤30 cm), closely spaced, at least partly interconnected, globular to amoeboid andesite bodies enclosed by tuff. This peperite type developed during intrusion of magma into fine-grained wet sediment along unstable interfaces, and fluidization of the sediment facilitated development of complex intrusive geometries. Blocky peperite and mixed blocky and fluidal peperite formed where magma intruded coarser sediment and underwent variable degrees of brittle fragmentation by quenching and dynamic stressing of rigid margins, possibly aided by small steam explosions. The northern half of the intrusive complex consists predominantly of a different type of peperite, in which decimetre-scale plagioclase-phyric andesite clasts with ellipsoidal, elongate, or angular, polyhedral shapes are closely packed to widely dispersed within disrupted host sediment. Textural features suggest the andesite clasts were derived from conduits through which magma was flowing, and preserved remnants of the conduits are represented by elongate, sinuous bodies up to 30 m or more in length. Disruption and dispersal of the andesite clasts are inferred to have occurred at least partly by steam explosions that ripped apart a network of interconnected feeder conduits penetrating the host sediments. Closely packed peperite is present adjacent to mappable intrusions of coherent andesite, and along the margin of a large mass of coarse-grained diorite. These coherent intrusions are considered to be major feeders for this part of the complex. Examples of magma/wet sediment interaction similar in scale to the extensive peperites described here occur elsewhere in ancient island-arc strata in the northern Sierra Nevada. Based on these and other published examples, large-scale peperites probably are more common than generally realized and are likely to be important in settings where thick sediment sequences accumulate during active volcanism. Careful mapping in well-exposed terrains may be required to recognize large-scale peperite complexes of this type. Received: 8 June 1998 / Accepted: 4 December 1998  相似文献   

16.
    
A growing body of work is illuminating the importance of dust as a component of soil development and biogeochemical cycling in alpine environments of the Rocky Mountains. Nonetheless, important questions remain about the dust system in this region due to a paucity of focused studies and direct measurements. This project involved deployment of modified marble dust traps in the alpine zone of the Uinta Mountains of Utah to trap modern atmospheric dust over a two year period. Results indicate that dust accumulation rates are similar to values previously reported for the Wind River Range of Wyoming, but less than values for south‐western Colorado, suggesting a south‐to‐north decrease in regional dust flux. The overall mean grain size of Uinta dust is similar to values reported by prior studies in Colorado, indicating a general uniformity in grain size distribution. Uinta dust is dominated by quartz, plagioclase, K‐feldspar, and illite with trace amounts of kaolinite, chlorite, and amphibole. In contrast, only quartz and K‐feldspar are present in the Uinta bedrock, confirming an exotic origin for the dust arriving in the alpine zone. Exotic mineralogies have also been reported in dust from other mountain ranges in the western United States, indicating that eolian delivery of allochthonous minerals is a widespread process. Geochemical analysis reveals that Bi, Na, P, Zn, Sn, Cu, Cd, Ba, Ni, W, Sb, Pb, and Tl in Uinta dust are elevated 10 to > 80‐times above their abundances in local bedrock. These results support reports of anthropogenic elemental enrichment in lake sediments from Colorado and Utah. Patterns of elemental loading suggest that certain elements are delivered by winds arriving from different directions, raising the possibility that some elements could be associated with unique source areas. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
    
Wood export from a watershed is a function of peak annual discharge, but one hydrologic relationship alone does not fully explain observed variability. Consideration of physical processes that influence the amount of wood available for transport is needed. However, wood recruitment, storage, mobilization, breakage, and transport rates and processes remain difficult to quantify. A theoretical wood transport equation focused on variations in discharge was the motivation for investigation into watershed‐specific wood export rates. Herein, multiplicative coefficients categorized by water year type are developed, paired with the equation, and validated to provide a new method for prediction of wood export at the watershed scale. The coefficients are defined as representing a broad suite of watershed processes that encompass spatio‐temporally variable scales. Two complementary datasets from the 1097 km2 mountainous North Yuba River, California watershed were used. Wood surveys above New Bullards Bar Reservoir yielded a wood availability estimate of 250 000–300 000 m3 along the channel network. Annual wood export into the reservoir was field‐surveyed in 2010, 2012 and 2013, and estimated in seven years via remotely sensed images over the 30 year study period of water years 1985–2014. Empirical, watershed‐scale wood export rates ranged from 0.3–5.6%. Comparison of predicted quantities using the new DVWP (discharge variations modified by watershed processes) wood export equation to observed wood export quantities resulted in an aggregate error rate of ±10%. When individual wood export quantities were compared, predicted to observed varied by 0.5–3.0 times. Total wood export of 59 000–71 000 m3 was estimated over the 30 year period, yielding a rate of 1.8 to 2.2 m3/year/km2. Wood export predictive capabilities at the watershed scale may help water resource and regulatory agencies plan for wood transfers to augment downstream ecosystems. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
    
Recent research has indicated that Sierra Nevada meadows are hydrologically more complex than previously considered. Improved understanding of the effects of aquifer parameters and climate change on water resources in and downstream of meadows is critically needed to effectively manage mountain meadows for ecosystem services and watershed contributions. This research investigates the roles of bedrock geometry, saturated hydraulic conductivity, and meadow gradient in affecting groundwater storage dynamics and surface‐water outflows in site‐scale high‐elevation meadows. Under current and projected lower snowpack conditions, we modeled groundwater flow in representative high‐elevation meadows considering 2 conceptual aquifer thickness models: uniform and variable thickness. Spatially, variable aquifer thicknesses interpreted from bedrock depths (0–28 m) were identified from a high‐resolution ground‐penetrating radar survey conducted at Tuolumne Meadows, CA. Our interpreted bedrock surface indicated several buried U‐shaped valleys including a buried ridge that separates 2 U‐shaped valleys. Groundwater flow simulations show that an increase in meadow gradient and hydraulic conductivity led to a decrease in seasonal storage and an increase in surface‐water outflow. However, models with varying bedrock geometries change the magnitude and timing of these processes. Uniform thickness models overestimated storage at the model edges and resulted in higher projected volumes of water being released to streams earlier than previously observed.  相似文献   

19.
  总被引:4,自引:0,他引:4  
Low-temperature oxidation under atmospheric conditions affects the magnetic properties of magnetite in natural rocks: the coercivities of magnetite grains increase and other parameters change accordingly. It was recently shown that heating to 150°C largely removes the effects of low-temperature oxidation (van Velzen and Zijderveld, 1995). Heating may therefore serve as a detection tool for the presence of the effect of low-temperature oxidation.In the present study, a collection of loess and paleosol samples from various loess regions of the world is examined for the influence of low-temperature oxidation. In all samples of the collection a decrease of coercivities was found after heating to 150°C. Generally loess samples were affected to a larger extent than paleosol samples. The original range of remanent coercivities(Bcr)of 21-58 mT changed to 20-42 mT after heating. The IRM capacity of the samples decreased from 0 up to 25%. ARM showed changes between a decrease of 10% and an increase of 15%. The grain-size indicative parameter IRM/ARM is considerably influenced by the heating and therefore by low-temperature oxidation. The changes in susceptibility are limited and will not influence the interpretation of large-scale features of the susceptibility record as a paleoclimate proxy. Small variations, however, may be obscured by the varying influence of oxidation in the outcrop, which can significantly modify the rock-magnetic record.Rock-magnetic parameters used to determine magnetic mineral content and grain sizes should be corrected for the effect of low-temperature oxidation. To this end heating to 150°C is recommended. The occurrence of the changes is in itself already an indication for the presence of magnetite. Low-temperature oxidation will not only be due to recent weathering in the outcrop, but also to earlier oxidation processes in the source area, during transport and deposition of the loess and during pedogenesis. Truly fresh sediment samples are only influenced by this earlier oxidation. In that case heating will reveal the degree of ancient low-temperature oxidation, which may be related to climate at the time of deposition and pedogenesis.  相似文献   

20.
The majority of geomorphological papers about Dartmoor have been essentially speculative, particularly when discussing weathering processes and the evolution of the Dartmoor landscape. In contrast, this article presents a synthesis of several experimental investigations aimed at studying the chemical weathering of Dartmoor granite through the systematic analysis of soil and water samples. This involved the computation of a geochemical budget to determine the amount of erosion in the catchment, as well as more detailed mineralogical investigations within a soil profile. The annual output of solutes due to weathering was 116 kg ha?1 a?1 of which the majority was silica (93 kg ha?1 a?1). From an examination of the soil mineralogy, it was calculated that these solutes were derived from the dissolution of approximately 200 kg ha?1 a?1 plagioclase, 90 kg ha?1 a?1 biotite, and 40 kg ha?1 a?1 orthoclase. As well as the weathering of granite, there was also the production of kaolinite (150 kg ha?1 a?1) and gibbsite (0.02 kg ha?1 a?1). Analysis of the soil water chemistry confirmed that kaolinite was the stable mineral phase in the regolith, although in areas where interflow was the dominant mode of water movement, the solute composition was in equilibrium with both kaolinite and gibbsite. Examination of the clay mineralogy confirmed these results. The microtexture of quartz grains was examined by the scanning electron microscope as another means of investigating the hydrochemical environment in the soil. Silica was found precipitated on all the grains examined but the maximum amount occurred in the Bs horizon. This evidence showed that, firstly, the dissolution of aluminosilicate minerals is greater than that calculated by the chemical budget and, secondly, that models of granite weathering must take localized weathering in the soil profile into account. The final part of the paper highlights the limitations of calculating denudation rates for an entire catchment and stresses the need to consider weathering as a highly localized phenomenon, particularly where there are high volumes of interflow at hill crest sites. Observations on granite decomposition in the future should be quantitative in approach and be related to the local site conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号