首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2020,46(3):2845-2852
Lithium-containing silicate compounds have attracted so much attention in recent years for applications in energy storage and illumination source due to their rigid structure and good electrical conductivity. In this study, a Eu3+ doped lithium-containing silicate red phosphor, Li2Ca4Si4O13:Eu3+, was explored by using structural computational simulations and systematic experiments for multifunctional applications. As a result, due to the quite non-central symmetry of the Ca2+ sites (C1 symmetry), the strong 4f-4f excitations in near ultraviolet region were observed. Under near ultraviolet and cathode ray light excitation, Li2Ca4Si4O13:Eu3+ phosphor has an efficient red emission with good thermal stability and ageing resistance. Furthermore, Li2Ca4Si4O13:Eu3+ phosphor exhibits a concentration-sensitive behavior induced by the change of site symmetry. The results show that it is feasible to develop near-ultraviolet and cathode ray light excited red phosphors in lithium-containing silicate compounds.  相似文献   

2.
Red phosphor is indispensable to achieve warm white light in the white light diode (WLED) application. However, the current red phosphors suffer from high cost and harsh synthesis conditions. In this study, an oxide-based rare-earth-free red-emitting phosphor Li3Mg2NbO6:Mn4+ (LMN:Mn4+) has been successfully synthesized by a simple solid-state reaction method. The relationship between crystal structure and luminescence was investigated in detail. The site occupancy of the doping Mn4+ ion in the LMN host has been discussed from the point of bond valence sum. How the coordination environment of doping Mn4+ affects the energy level of doping Mn4+ ion has been illustrated via the Tanabe-Sugano energy-level diagram. Moreover, warm white light has been obtained using LMN:Mn4+ as compensator to the YAG:Ce3+.  相似文献   

3.
《Ceramics International》2023,49(8):12088-12096
Mn4+ activated fluoride red phosphors, as candidate red materials in white light-emitting diodes (WLEDs), have received widespread attention. However, the poor water stability limits their application. Herein, a novel dodec-fluoride red phosphor Na3Li3In2F12:Mn4+ with good waterproof stability was successfully synthesized by solvothermal method. The crystal structure, optical property, micro-morphology, element composition, waterproof property and thermal behavior of Na3Li3In2F12:Mn4+ phosphor were analyzed. Under the 468 nm blue light excitation, the Na3Li3In2F12:Mn4+ phosphor has narrow emission bands in the area of 590–680 nm. Compared with commercial red phosphor K2SiF6:Mn4+, the Na3Li3In2F12:Mn4+ phosphor possesses better waterproof stability. When soaked in water for 360 min, the PL intensity of the Na3Li3In2F12:Mn4+ phosphor remains at initial 80%. Finally, warm WLEDs with CRI of 87 and CCT of 3386 K have been fabricated using blue InGaN chip, YAG:Ce3+ yellow phosphor and Na3Li3In2F12:Mn4+ red phosphor.  相似文献   

4.
《Ceramics International》2020,46(12):20277-20283
In this study, an orange emitting afterglow phosphor of Zn2SnO4:Eu3+ was fabricated using the co-precipitation & hydrothermal method, and then annealed in Ar atmosphere at 1000 °C. X-ray diffraction, Raman spectra, EDX, fluorescence spectrometer, SEM and TEM were performed to characterize the target products. As revealed from the XRD analysis results, the fabricated product was the cubic inverse spinel structure Zn2SnO4 (JCPDS 24–1470) exhibiting high crystallinity. As confirmed by Raman and EDX spectra, the target product was Zn2SnO4:Eu3+. As Zn2SnO4:Eu3+ was excited at 347 nm, its fluorescence spectra showed the magnetic dipole emission at 589 nm and the electric dipole transition at 610 nm, complying with the transitions of Eu3+ ions from 5D07F1 and 5D07F2. Meantime, Zn2SnO4:Eu3+ phosphors displayed an orange afterglow, and its attenuating characteristics met the exponential equation. Moreover, the optimal doping amount of Eu3+ ions was 15 mol%, and the concentration quenching took place by the cross relaxation. The color coordinate of the product (x = 0.15) was determined as (0.522, 0.4635), and the color purity reached 98.3%.  相似文献   

5.
As for plants, far-red (FR) light with wavelength from 700 nm to 740 nm is critical for processes of photosynthesis and photomorphogenesis. Light-controlled development depends on light to control cell differentiation, structural and functional changes, and finally converge into the formation of tissues and organs. Phosphor converted FR emission under LED excitation is a cost-effective and high-efficient way to provide artificial FR light source. With the aim to develop an efficient FR phosphor that can promote the plant growth, a series of gadolinium yttrium gallium garnet (GYGAG) transparent ceramic phosphors co-doped with Mn2+ and Si4+ have been fabricated via chemical co-precipitation method, followed sintered in O2 and hot isostatic pressing in this work. Under UV excitation, the phosphor exhibited two bright and broadband red emission spectra due to Mn2+: 4T1 → 6A1 spin-forbidden transition, and one of which located in the right FR region. And then, Ce3+ ions were co-doped as the activator to enhance the absorption at blue light region and the emission of Mn2+. It turns out that the emission band of GYGAG transparent ceramic phosphors matches well with the absorption band of phytochrome PFR, which means they are promising to be applied in plant cultivation light-emitting diodes (LEDs) for modulating plant growth. Besides, the thermal stability of this material was investigated systematically, and an energy transferring model involves defects was also proposed to explain the phenomenon of abnormal temperature quenching.  相似文献   

6.
《Ceramics International》2022,48(24):36140-36148
Non-rare earth Mn4+ ion-doped red oxide phosphors have great potential for applications in warm white light-emitting diodes (wLEDs) due to their low cost and stable physicochemical properties. Herein, a series of Ba2LaTaO6 (BLTO): Mn4+ phosphors were successfully synthesized by the high-temperature solid-state method. The theoretical values of the band gap calculated by the density functional theory are close to the experimental values obtained by the absorption spectroscopy. In addition, the phosphors have a broad excitation band in the wavelength range of 280–550 nm and emit red light at the peak wavelength of 681 nm under excitation. The concentration quenching of the BLTO: Mn4+ phosphor was caused by dipole-dipole interactions. The activation energy and the average decay lifetimes of the samples were calculated. Meanwhile, the effects of synthesis temperature and Li+ ion doping on the luminescence performance of the samples were also investigated. Satisfactorily, the color purity and internal quantum efficiency of the phosphor reached 98.3% and 26.8%, respectively. Further, the samples were prepared as red-light components for warm wLEDs. The correlated color temperature, color rendering index, and luminous efficiency of the representative devices driven by 60 mA current were 5190 K, 83.3, and 81.59 lm/W, respectively. This work shows that the BLTO: Mn4+ red phosphor with excellent luminescence performance can be well applied to warm wLEDs.  相似文献   

7.
《Ceramics International》2017,43(8):6353-6362
Red phosphors serve an important function as red components of warm white light-emitting diodes (WLEDs). Given their remarkable luminescent properties and low cost, Mn4+-doped phosphors are attracting significant attention. In this study, the novel red phosphor Ba2GdNbO6:Mn4+ was synthesized through high-temperature solid-state reaction. The host Ba2GdNbO6 with a double-perovskite structure was investigated. Scanning electron microscopy and thermogravimetric analysis were performed to evaluate the structure and thermal stability of the phosphor, respectively. PLE and photoluminescence spectra were further used to study the luminescence properties of the phosphor. Moreover, crystal field strength and Racah parameters were calculated to estimate the nephelauxetic effect of Mn4+ on the Ba2GdNbO6 host lattice. Thermal quenching characteristics were also analyzed. The fabricated red-emitting LED revealed its potential application in WLEDs.  相似文献   

8.
《Ceramics International》2017,43(18):16323-16330
The tricolor-emitting MgY4Si3O13: Ce3+, Tb3+, Eu3+ phosphors for ultraviolet-LED have been prepared via a high-temperature solid-state method. X-ray diffraction, photoluminescence emission, excitation spectra and fluorescence lifetime were utilized to characterize the structure and the properties of synthesized samples. Two different lattice sites for Ce3+ are occupied from the host structure and the normalized PL and PLE spectra. The emissions of single-doped Ce3+/Tb3+/Eu3+ are located in blue, green and red region, respectively. The energy transfer from Ce3+ to Tb3+ and from Tb3+ to Eu3+ has been validated by spectra and decay curves and the energy transfer mode from Tb3+ to Eu3+ was calculated to be electric dipole-dipole interactions. By adjusting the content of Tb3+ and Eu3+ in MgY4Si3O13: Ce3+, Tb3+, Eu3+, the CIE coordinates can be changed from blue to green and eventually generate white light under UV excitation. All the results indicate that the MgY4Si3O13: Ce3+, Tb3+, Eu3+ phosphors are potential candidates in the application of UV-WLEDs.  相似文献   

9.
Ce3+ doped Lu3Al5O12 (Ce:LuAG) ceramics were fabricated by the solid-state reaction method through spark plasma sintering (SPS) from 1350 °C to 1700 °C for 5 min at a pressure of 50 MPa using micro powders. The average grain size of the SPSed ceramics gradually grew from 0.42 µm (1400 °C) to 1.55 µm (1700 °C), which is nearly one order of magnitude lower than that of vacuum sintered (VSed) Ce:LuAG ceramics (~24.6 µm). Characteristic Ce3+ emission peaking at around 510 nm appeared and 92% photoluminescence intensity of room temperature can be reserved at 200 °C revealing excellent thermal stability. The maximum radioluminescence intensity reached around 3 times of VSed Ce:LuAG ceramics and 7.8 times of BGO crystals. The maximum scintillation light yield under γ-ray (137Cs) excitation reached 9634 pho/MeV @ 2 μs. It is concluded that SPS technology is a feasible way to develop Ce:LuAG ceramics and further optical enhancement can be expected.  相似文献   

10.
《Ceramics International》2017,43(12):9158-9163
In this account, Bi4Si3O12:Sm3+ and (Bi4Si3O12:Sm3+, Pr3+) red phosphors were prepared by solution combustion method fueled by citric acid at 900 °C for 1 h. The effects of co-doping Pr3+ ions on red emission properties of Bi4Si3O12:Sm3+ phosphors, as well as the mechanism of interaction between Sm3+ and Pr3+ ions were investigated by various methods. X-ray diffraction (XRD) and Scanning electron microscopy (SEM) revealed that smaller amounts of doped rare earth ions did not change the crystal structure and particle morphology of the phosphors. The photoluminescence spectroscopy (PL) indicated that shape and position of the emission peaks of (Bi4Si3O12:Sm3+, Pr3+) phosphors excited at λex=403 nm were similar to those of Bi4Si3O12:Sm3+ phosphors. The strongest emission peak was recorded at 607 nm, which was attributed to the 4G5/26H7/2 transition of the Sm3+ ion. The photoluminescence intensities of Bi4Si3O12:Sm3+ phosphors were significantly improved by co-doping with Pr3+ ions and were maximized at Sm3+ and Pr3+ ions doping concentrations of 4 mol% and 0.1 mol%, respectively. The characteristic peaks of Sm3+ ions were displayed in the emission spectra of (Bi4Si3O12:Sm3+, Pr3+) phosphors excited at respectively λex=443 nm and λex=481 nm (Pr:3H43P2, 3H43P0). This indicated the existence of Pr3+→Sm3+ energy transfer in (Bi4Si3O12:Sm3+, Pr3+) phosphors.  相似文献   

11.
Latent fingerprints provide crucial affirmations of identity in forensic science. However, they are microscopic. In this study, novel fluorescence materials, Ba2LaSbO6:Mn4+ (BLSO:Mn4+) phosphors, were developed by a sol–gel method for the fluorescence imaging of latent fingerprints. The structural properties of the phosphors were investigated by powder X-ray diffraction (XRD) and its Rietveld refinement analyses, and transmission electron microscopy and scanning electron microscopy techniques. The photoluminescence properties of the BLSO:Mn4+ phosphors were evaluated comprehensively by recording the emission, excitation, and decay curves. The BLSO:Mn4+ phosphors provide a high-intensity red emission at 677 nm under 350 nm excitation caused by the 2Eg4A2g transition of Mn4+. The optimum concentration of Mn4+ in the BLSO host was determined to be ~0.2 mol%. The calculated Commission International de L'Eclairage (CIE) chromaticity coordinates (0.716, 0.283) of the emission from the BLSO:Mn4+ phosphor are located in the pure red region of the CIE 1931 diagram. The red-emitting BLSO:0.2Mn4+ phosphor was used as a fluorescence imaging powder for visualizing latent fingerprints on various substrates with high resolution, high contrast, and high efficiency, as well as good selectivity.  相似文献   

12.
Mn4+-activated phosphors, Mg28Ge10O48-δFδ:Mn4+ (MGFs), can be obtained through an oxygen postannealing process. Analyses of the crystal structure and elemental composition by powder X-ray diffraction (XRD) and electron probe microanalysis (EPMA), respectively, indicated that under an O2 atmosphere, oxygen atoms were substituted with fluorine atoms in the original MGF structure to leach the fluorine atoms with germanium atoms as GeF4 by oxygen postannealing. The MGF phosphor annealed in O2 exhibited ~1.3 times higher quantum efficiency (QE) than that annealed in ambient air. The Raman spectroscopy results suggested that an increase in the content of the [Mn4+O6] octahedron led to an increase in the QE values. Additionally, the relaxation of lattice defects in the lattice interior and on the surface observed by XRD and X-ray photoelectron spectroscopy (XPS) measurements could explain the change in thermal quenching behavior between the different atmospheres, and the decrease in lattice defects increased the QE. The investigation of MGF phosphors prepared by different processes provides insight into the relationships among the surface and local structures, chemical composition, and photoluminescence properties. The optimized synthetic procedure increases the Mn4+ content and decreases the Mn2+ and Mn3+ contents in the phosphor, which drastically increases the luminescence efficiency.  相似文献   

13.
《Ceramics International》2017,43(9):7147-7152
Novel Mn4+-doped magnetoplumbite-related aluminate X-type Ca2Mg2Al28O46 and W-type CaMg2Al16O27 red phosphors were synthesized by solid-state reaction, and we investigated their photoluminescence properties. X-type Ca2Mg2Al28O46:Mn4+ and W-type CaMg2Al16O27:Mn4+ exhibited red photoluminescence, with peaks at 655 and 656 nm, arising from the spin-forbidden 2E→4A2 transition of Mn4+ under near-ultraviolet and blue light excitation, respectively. Therefore, these red phosphors can be excited by near ultraviolet or blue LED light. The photoluminescence properties of these phosphors were similar because magnetoplumbite-related structures crystallize similarly, forming structures consisting of stacked S and R blocks. From these results, we confirmed that magnetoplumbite-related compounds can act as the host structure for Mn4+-doped phosphors.  相似文献   

14.
Li5La3Ta2O12:Mn4+ (LLTO:Mn4+) phosphors are prepared in air via high-temperature solid-state method and investigated for their crystal structures and luminescence properties. LLTO:Mn4+ phosphor under excitation at 314 nm shows deep-red emission peaking at 714 nm due to the 2E→4A2 transition of Mn4+ ion. The excitation bands in the range 220 - 570 nm are attributed to the Mn4+ - O2- charge-transfer band and the 4A2g4T1g, 2T2g, and 4T2g transitions of Mn4+, respectively. The optimal Mn4+ ion concentration is ~0.4 mol%. The concentration quenching mechanism in LLTO:Mn4+ phosphor is electric dipole-dipole interaction. The luminous mechanism and temperature quenching phenomenon are explained by the Tanabe-Sugano energy level diagram and the configurational coordinate diagram of Mn4+ in the octahedron, respectively. The experimental results indicate that LLTO:Mn4+ phosphor has a potential application prospect as candidate of deep-red component in light-emitting diode (LED) lighting.  相似文献   

15.
《Ceramics International》2021,47(24):34721-34731
A series of Sr9Y(PO4)7:Eu3+ and Sr9Y(PO4)7:Eu3+, Gd3+ red-emitting phosphors were prepared via a high-temperature solid-state method, Gd3+ ion was co-doped in Sr9Y(PO4)7:Eu3+ as sensitizer to enhance the luminescence property. The X-ray diffraction results verify that the structure of the as-prepared samples is consistent with the standard Sr9Y(PO4)7 phase. All the Sr9Y(PO4)7:Eu3+ samples show both characteristic emission peaks at 594 nm and 614 nm under near-ultraviolet excitation of 394 nm. The co-doping of Gd3+ significantly improves the luminescence intensity of the Sr9Y(PO4)7:Eu3+ phosphors due to the crystal field environment effect and energy transfer of Gd3+→Eu3+ caused by the introduction of Gd3+, especially Sr9Y(PO4)7:0.11Eu3+, 0.05Gd3+, which emission intensity is higher than that of Sr9Y(PO4)7:0.11Eu3+ by 1.21 times. The color purity and lifetime of Sr9Y(PO4)7:0.11Eu3+, 0.05Gd3+ phosphor are 88.26% and 3.7615 ms, respectively. A w-LED device was packaged via coating the as-prepared phosphor on n-UV chip of 395 nm with commercial phosphors. These results exhibit that the Sr9Y(PO4)7:Eu3+, Gd3+ red-emitting phosphor can be used as a red component in the w-LEDs application.  相似文献   

16.
Al2O3/Lu3Al5O12 (LuAG) directionally solidified eutectic (DSE) ceramics with two solidification rates were prepared utilizing optical floating zone (OFZ) technique. The microstructures (eutectic morphology, preferred growth direction and interface orientation) of Al2O3/LuAG were characterized, and the mechanical properties (Vickers hardness and fracture toughness) were compared with those of Al2O3/REAG (RE = Y, Er, and Yb). Results show that Al2O3/LuAG with solidification rate of 30 mm/h has established preferred growth direction in both Al2O3 and LuAG phases with cellular eutectic structures. While Al2O3/LuAG with solidification rate of 10 mm/h only shows preferred growth direction in Al2O3 phase and presents degenerate irregular eutectic microstructures. Besides, Al2O3/LuAG exhibits higher hardness compared with Al2O3/REAG (RE = Y, Er, and Yb). In addition, a special attention is focused on the relations among rare earth ionic radius, eutectic microstructures, and mechanical properties of these DSE ceramics. It is demonstrated that a smaller rare earth ionic radius could lead to larger eutectic interspacing as well as higher Vickers hardness of DSE Al2O3/REAG, revealing the possibility and feasibility of microstructure control and mechanical properties optimization for DSE Al2O3/REAG ceramics by tailoring the rare earth elements.  相似文献   

17.
Nonstoichiometric alumina-rich spinel provides diverse and changeable local environments for transition-metal dopants. In this contribution, novel Mg0.752Al2.165−xO4:xFe3+ deep red-emitting phosphors were designed and prepared by the solid-state reaction method. The red emission presents an unexpected shift from 735 to 770 nm by comparing with Fe3+-doped MgAl2O4. The excitation spectrum of Mg0.752Al2.165−xO4:xFe3+ is broadened in the UV region with a new strong peak at 320 nm. The crystal structure refinement and NMR spectra fitting reveal that the cation vacancies and disorder increase with excess Al3+ entering the spinel crystal lattice. According to the results of EPR, NMR, and PL/PLE measurements, it was proposed that the Fe3+ ions locate at the distorted octahedral coordination. The changes of the local structure of Fe3+ ions promote the doublet state's involvement in the d−d transition. It was proposed that the new excitation peak at 320 nm in Mg0.752Al2.165−xO4:xFe3+ is associated with the transitions from the ground state 6A1g(6S) to the 4A2g(4F)/T1g(4P) and doublet states. The transition between the lower energy excited state of 2T2g(2I) and 6A1g(6S) mainly contributes to the deep red emission and the red-shifting effect.  相似文献   

18.
《Ceramics International》2019,45(15):18876-18886
Red-emitting Sr0.8Ca0.19AlSiN3:0.01Eu2+ phosphor with halide fluxes for use in the production of white light-emitting diodes (white LEDs) with high-colour rendering indices (CRIs) was prepared through the high-temperature solid-state method. Fluoride (NaF, SrF2, BaF2, CaF2, AlF3·3H2O and CeF3), chloride (NH4Cl, BaCl2, MgCl2, NaCl and LiCl) and composite fluxes (NaF + SrF2, SrF2+NH4Cl and NaF + NH4Cl) were applied in the phosphors. NaF, SrF2, NH4Cl and NaF + SrF2 fluxes had prominent effects on the characteristics of Sr0.8Ca0.19AlSiN3:0.01Eu2+ phosphors. Sr0.8Ca0.19AlSiN3:0.01Eu2+ phosphors with various powder morphologies can be obtained through the addition of fluxes, which are conducive for phosphor formation. The powder morphologies of phosphors incorporated with NaF + SrF2 were preferable to those of powders incorporated with other fluxes. This result indicated that the incorporation of NaF + SrF2 into Sr0.8Ca0.19AlSiN3:0.01Eu2+ yielded phosphors with high luminescent intensity and quantum efficiency, excellent thermal stability, narrow full widths at half-maximum (FWHM, 75.2 nm), uniform rod-like morphologies with large particle sizes (D50 = 16.99 μm) and good particle dispersion. White LEDs with high CRIs were obtained by combining prepared phosphors (NaF + SrF2 additive) with the commercial green-emitting phosphors Y3(Al,Ga)5O12:Ce3+ and (Sr,Ba)2SiO4:Eu2+. White LEDs with Y3(Al,Ga)5O12:Ce3+ and (Sr,Ba)2SiO4:Eu2+ phosphors had correlated colour temperatures (CCTs) of 3064 and 3023 K, respectively, and CRIs of 81.8 and 92.4, respectively. Therefore, NaF + SrF2 can be used as a favourable flux for the production of Sr0.8Ca0.19AlSiN3:0.01Eu2+.  相似文献   

19.
以氧化钇、氧化铕为原料,以偏钒酸铵、磷酸氢二铵作沉淀剂,采用共沉淀法制得Y(VxP1-x)O4:Eu3 。通过扫描电镜XRD、发射和激光光谱以及发光亮度测试,与高温固相法相比,共沉淀法合成的钒磷酸钇铕粒度更小、分布更均匀,且发光亮度更佳。改变样品中V/P的物质的量之比,可以调节其发光效果。  相似文献   

20.
本文以乙二醇为溶剂,无水乙醇为助燃剂,首次采用自蔓延燃烧法制备了白光LED用Ba3Mgsi2O8∶Eu2+,Mn2+荧光粉,利用XRD、粒度分析仪和荧光分光光度计对样品进行了测试,荧光分析结果表明:在375nm波长光源激发下,1100℃制备的样品可同时发射绿、蓝两色光.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号