首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
棉花咖啡酰辅酶A-O-甲基转移酶基因的克隆及特征分析   总被引:1,自引:0,他引:1  
根据棉花纤维特异表达cDNA文库得到的咖啡酰辅酶 A-O-甲基转移酶基因EST序列设计引物,采用RT-PCR技术从棉花中克隆了一个CCoAOMT基因,命名为GhCCoAOMT2.GhCCoAOMT2基因cDNA(GenBank登录号为FJ376606)具有一个747 bp的开放阅读框,5′非编码区为12 bp,3′非编码区为243 bp,编码248个氨基酸,预测分子量约为28.023 kD,等电点为5.39.GhCCoAOMT2基因组序列长度为1 442 bp,包含4个外显子和3个内含子.氨基酸同源分析发现,GhCCoAOMT2与来自毛白杨、烟草和苎麻的CCoAOMT同源性较高.半定量RT-PCR检测表明,GhCCoAOMT2基因在棉花各个组织中都有表达,其中茎部的表达量最高.原核表达分析表明,最佳诱导表达条件为0.2 mmol/L IPTG在37℃下诱导6 h.  相似文献   

2.
依赖于DNA甲基化的基因表达调控在植物生长发育过程中发挥重要功能,而DNA甲基转移酶是调节DNA甲基化模式的功能蛋白之一。本研究采用RACE技术克隆了小麦甲基转移酶基因TaDnMT2的包含完整编码区的cDNA序列,并系统分析了该基因的结构特征及其在小麦生长发育过程中的表达特性。结果表明,TaDnMT2的cDNA序列为1321bp(GenBank登录号:JN642641),其中5′-和3′-UTR(非翻译区)分别为84和115bp、ORF(开放阅读框)1122bp;TaDnMT2编码的氨基酸序列包含2个S-腺苷甲硫氨酸结合域(I和X)、甲基转移酶活性位点(IV)、靶胞嘧啶结合位点(VI)、中和DNA骨架负电荷域(VIII)和靶位点识别区(IX)6个高度保守域,属于DNA甲基转移酶家族的DnMT2亚类;三维结构预测显示,TaDnMT2蛋白可以形成包括7个β-折叠和4个α-螺旋的特定空间结构。表达特性分析的结果表明,TaDnMT2基因在‘京841’小麦不同发育时期的叶中表达量均较高,且其在三叶龄期和五叶龄期的表达量受春化处理的影响;在种子发育过程中,该基因在授粉后5d的种子中表达量较高,随着种子发育进程的推进其表达水平呈逐渐下降趋势;在不同发育时期的根系中,TaDnMT2基因均具有较高水平的表达,且在分蘖期根系中的表达量最高。推断TaDnMT2基因可能在小麦生长发育过程中发挥重要功能。  相似文献   

3.
该研究根据板栗(Castanea mollissima Bl.)cDNA文库分析得到EST序列,采用RT-PCR技术,克隆板栗咖啡酸氧甲基转移酶(caffeic acid O-methyltransferase,COMT)基因全长cDNA(CmCOMT),分析其编码蛋白的相关信息并进行原核表达研究,为板栗木质素合成关键酶基因CmCOMT的生物学功能研究与应用奠定基础。结果表明:(1)CmCOMT基因(GenBank登录号为KU365322)具有一个1 098bp开放阅读框(ORF),共编码365个氨基酸,推测蛋白分子质量为39.684 9kD,理论等电点为5.83,具有植物SAM依赖甲基转移酶的典型特征。(2)CmCOMT核苷酸序列及其编码氨基酸序列与垂枝桦(Betula pendula)和白桦(Betula platyphylla)的相应序列一致性均在90%以上;同源建模表明,CmCOMT的3D模型与苜蓿(Medicago sativa)MsCOMT的蛋白结构相似,推测其可能与MsCOMT具有相似的功能;系统发育树分析显示,CmCOMT与其他植物COMTs具有相同的进化祖先,与桦木科植物物种亲缘关系最近。(3)SDS-PAGE电泳分析表明,CmCOMT蛋白最佳诱导表达条件为0.3mmol/L IPTG在25℃下诱导6h,蛋白分子量约为44kD,其主要以可溶性蛋白的形式存在。  相似文献   

4.
采用RACE技术从忽地笑也Lycoris aurea ( L'Hér.) Herb.页叶片中克隆获得γ-生育酚甲基转移酶(γ-TMT)基因,命名为LaTMT。序列分析结果显示:该基因cDNA全长1458 bp,其中开放阅读框( ORF)长1017 bp,编码338个氨基酸残基。 LaTMT基因编码蛋白质的理论相对分子质量37560,理论等电点pI 8.70,为亲水性蛋白,无跨膜结构但具有信号肽结构;并具有S-腺苷甲硫氨酸( SAM)甲基转移酶保守结构域,包含3个SAM结合位点;该蛋白的二级结构中包含44.08%的α-螺旋、32.84%的无规则卷曲、12.72%的延伸链和10.36%的β-转角。序列比对和系统进化树分析结果显示:LaTMT蛋白属于S-腺苷甲硫氨酸-依赖性γ-生育酚甲基转移酶家族,与其他植物γ-TMT蛋白的一致性为64%~75%;在 NJ系统树上, LaTMT蛋白与单子叶植物γ-TMT蛋白聚为同一大类,并与油棕( Elaeis guineensis Jacq.) EgTMT和美洲油棕也Elaeis oleifera ( Kunth) Cortés页EoTMT聚为同一类,亲缘关系最近。基因表达分析结果显示:LaTMT基因可在大肠杆菌中成功表达,且表达量随异丙基硫代半乳糖苷( IPTG)诱导时间的延长而增加;在忽地笑的根、叶片、花苞、子房、雄蕊、花瓣和鳞茎中LaTMT基因均可表达,其中在叶片中的相对表达量最高,在子房、雄蕊和鳞茎中的相对表达量相对较低,具有明显的组织特异性。研究结果表明:忽地笑LaTMT基因在进化过程中具有很高的保守性;该基因主要定位于叶绿体中,并与忽地笑对非生物逆境胁迫的抗性相关。  相似文献   

5.
目的:琥珀酰辅酶A转移酶(SCOT)是酮体代谢过程中的关键限速酶,此酶缺陷多由SCOT基因突变引起,患者多有酮症酸中毒表现。为了进一步研究SCOT的功能,采用原核表达系统表达并纯化重组SCOT,制备SCOT多克隆抗体。方法:选择蛋鸡、肉鸡模式生物为研究对象,通过生物信息学对其抗原性和属间同源性进行分析,通过RT-PCR从鸡的骨骼肌cDNA中扩增了SCOT基因N端半长片段,克隆到表达载体pET28b中,在大肠杆菌BL21(DE3)中诱导表达,并用镍离子螯合柱(Ni-NTA)纯化重组SCOT;用纯化的重组SCOT免疫小鼠后得到多克隆抗体。结果:Western印迹表明,制备的SCOT抗体具有较高的特异性,可特异性识别鸡的SCOT蛋白,同时可特异性识别小鼠和人的相应SCOT蛋白。结论:SCOT多克隆抗体的制备为后续在鸡、鼠和人中研究SCOT基因提供基础。  相似文献   

6.
以国审油茶(Camellia oleifera)良种‘华硕’种子为材料,在已构建的转录组和表达谱数据库基础之上,采用RACE技术,克隆获得油茶脂酰辅酶A脱氢酶基因的全长c DNA序列,命名为Co ACAD(基因登录号KJ910338)。该基因c DNA全长为2702 bp,含有2487 bp的开放读码框,编码828个氨基酸,分子量为92.4113 k D,理论等电点p I为8.47,具有2个比较明显的跨膜区和酪氨酸蛋白激酶活性位点LVHGDFRIDNLVF,存在5个亚结构域;在Co ACAD基因c DNA全长序列的基础上构建表达载体,其中原核表达载体在宿主细胞BL21(DE3)中成功诱导表达,获得表观分子量约为93 k D的目的蛋白;实时荧光定量PCR分析表明,Co ACAD基因在果实膨大期和成熟期上调表达,预示着Co ACAD基因可能在种子发育过程中参与能量供应过程的调控。  相似文献   

7.
目的:克隆表达甲基丙二酰辅酶A变位酶(MCM)蛋白,为进一步研究相关基因突变对功能的影响机制奠定基础。方法:自人外周血淋巴细胞中提取总RNA、逆转录,并与pET32a构建融合蛋白原核表达载体;优化蛋白表达诱导条件;经SDS-PAGE、WesternBlot检测目的蛋白的表达。结果:经酶切鉴定并经测序证实获得全长2210bp的甲基丙二酰辅酶A变位酶基因(MUT),并成功构建融合蛋白原核表达载体,SDS-PAGE在102 kDa处获得目的条带,Western Blot检测确定为MCM表达蛋白。结论:成功克隆表达出MCM表达蛋白。  相似文献   

8.
大肠杆菌JM83精氨酰—tRNA合成酶基因的克隆,测序及表达   总被引:5,自引:0,他引:5  
用聚合酶链反应(PCR)以大肠杆菌JM83基因组DNA为模板,扩增了精氨酰t-RNA合成酶基因,将该基因重组到载体pUC18上转化到大肠杆菌TG1中,得到在转化子中ArgRS的高表达。精抽液中ArgRS的氨酰化活力,TG1和TG1转化子分别为1.65U/mg。后者为前者的127倍,DNA顺序测定表明,与从大肠杆菌JA200中克隆到的ArgRS基因相比913位碱基为A而不为C,这种变化使ArgRS的  相似文献   

9.
采用电子克隆与实验克隆相结合的方法获得了大豆酪氨酸氨基转移酶基因的cDNA序列,GenBank登录号为DQ003328.序列分析结果表明,该cDNA序列含有一个编码425个氨基酸的完整的开放读码框,5′非翻译区具有多个同框终止密码子,3′端具有3个加尾信号和polyA尾巴.启动子区除含有通用核心元件外,还含有许多与光反应有关的作用元件.氨基酸序列比对和系统发育分析结果显示,不同物种之间酪氨酸氨基转移酶的氨基酸序列同源性较高.电子表达分析和RT-PCR组织表达分析结果表明,该基因的表达量与组织中叶绿体含量具有很高的关联,强光逆境能够上调该基因的表达.  相似文献   

10.
磷酸胆碱是合成磷脂酰胆碱和甘氨酸甜菜碱的重要前体,磷酸乙醇胺N-甲基转移酶(PEAMT)是磷酸胆碱合成的关键酶。根据已知的SePEAMT cDNA5'端序列设计两个基因特异的反向引物(PP1,PP2),通过锚定PCR获得了PEAMT起始密码子上游1249bp的序列。RLM-RACE反应确定其转录起始位点A位于起始密码子上游301bp处,由此获得了948bp的SePEAMT启动子序列。PlantCARE和PLACE在线启动子预测工具分析表明:该序列除了含有启动子的基本元件TATA-box和CAAT-box外,还含有一些胁迫诱导元件(如ABRE、HSE、LTR)和花粉特异的激活元件AGAAA。构建了SePEAMT启动子与报告基因GUS 融合的表达载体pPro,并通过农杆菌介导的叶盘法转化烟草,染色结果表明SePEAMT启动子可以有效地驱动GUS基因的瞬时表达。  相似文献   

11.
根据棉花纤维特异表达cDNA文库分析得到的4-香豆酸辅酶A连接酶基因EST序列设计引物,采用RT-PCR技术从棉花中克隆了1个4CL基因,命名为Gh4CL1(GenBank登录号为FJ479707).结果表明:Gh4CL1基因cDNA全长2 331 bp,具有1个1 722 bp的开放阅读框,5′非编码区为64 bp,3′非编码区为445 bp,编码573个氨基酸,预测分子量约为61.951 kD,等电点为5.70.氨基酸同源性分析发现,Gh4CL1与来自白杨、大豆和紫草的4CL同源性较高.半定量RT-PCR检测表明,Gh4CL1基因在不同发育阶段的棉纤维中均有表达,在开花后20 d的棉纤维中表达量最大,说明该基因可能参与调控棉纤维细胞的伸长和次生壁的增厚.Gh4CL1基因在棉花花瓣中表达量最高,在其他组织中低水平表达或不表达.  相似文献   

12.
棉花4-香豆酸辅酶A连接酶基因克隆及原核表达   总被引:4,自引:0,他引:4  
本研究从棉花中克隆了一个4CL基因,命名为Gh4CL2(GenBank登录号为FJ848870)。研究结果表明:Gh4CL2基因cDNA全长2332bp,具有一个1725bp的开放阅读框,5′非编码区为64bp,3′非编码区为543bp,编码574个氨基酸,预测分子量约为62.106kD,等电点为5.94。氨基酸同源性分析发现,Gh4CL2与来自白杨、大豆和紫草的4CL一致性较高。进一步研究Gh4CL2基因的功能,构建了该基因的原核表达载体pET-28a-4CL2,经酶切鉴定后转化到大肠杆菌BL21(DE3)中。SDS-PAGE分析表明,最佳诱导表达条件为0.5mmol/LIPTG在37℃下诱导4h,重组蛋白主要以包涵体形式出现。  相似文献   

13.
卤代酸脱卤酶(HAD)在调节植物生长发育和响应磷缺乏胁迫方面具有重要作用。该研究基于前期陆地棉根部低磷胁迫基因差异表达序列数据分析,以陆地棉新陆早19为材料,对GhPS2基因进行克隆,并对其基因组DNA与cDNA测序分析,借助生物信息学方法分析GhPS2的基因结构和进化关系;采用荧光定量PCR(qRT-PCR)的方法检测该基因于根、茎、叶、花4个器官的基因表达量变化和低磷胁迫下0,4,12,24,72 h的相对表达。结果表明,(1)成功获得陆地棉GhPS2基因,该基因的开放阅读框序列长度813 bp,编码270个氨基酸,存在3个内含子,属于HAD家族,其中存在1个保守结构域名为Put-Phosphatase。(2)序列比对和进化分析显示,陆地棉GhPS2与其他棉种PS2、榴莲PS2的相似性分别为93%和83.15%。(3)qRT-PCR结果表明,GhPS2基因在根中表达量最高,其次是茎和花,在叶中表达量最低,该基因在低磷胁迫4 h时相对表达量达到最高值,低磷胁迫72 h时是适磷处理的16.66倍。研究表明,GhPS2基因属于低磷胁迫响应基因,在棉花响应低磷胁迫过程中具有重要作用。  相似文献   

14.
蒋建雄  张天真 《遗传学报》2004,31(2):171-176
利用PCR筛选方法从陆地棉纤维cDNA文库中分离出1个基因序列,命名为ChCtp。该cDNA全长1917bp,编码1个含473个氨基酸残基的多肽。GhCtp蛋白与拟南芥和水稻中的一类羧基末端蛋白酶具有较高的同源性,在GhCtp的N-末端有1个精氨酸富集区,而C-末端有1个Pfam数据库中编号为DUF239的高度保守区域;该蛋白的N-末端还存在1个在拟南芥和水稻羧基蛋白酶中所缺乏的ATP/GTP结合区A序列。亲水性分析表明,GhCtp为1个可能的跨膜蛋白。从表达特征来看,GhCtp不属于纤维细胞特异表达或优势表达基因,并且它在棉花不同组织中或不同纤维发育时期的表达强度均很低。  相似文献   

15.
采用RACE和RT-PCR技术,克隆了陆地棉干旱胁迫硫氧还蛋白基因,利用荧光定量PCR技术分析该基因在不同组织和不同时期的表达情况.结果表明,陆地棉硫氧还蛋白基因(GhTrx)的cDNA全长1 340 bp,其中ORF 864 bp,推测编码288个氨基酸.该基因编码蛋白与杨树、蓖麻、拟南芥的相似性分别为70%、72%和76%,系统发育树分析显示,GhTrx与蓖麻中该蛋白的亲缘关系最近.RT-PCR分析显示,GhTrx基因表达受干旱胁迫诱导,在干旱诱导下,该基因在抗旱材料中H177中上调表达,在根中的表达量明显高于叶.研究表明,GhTrx基因在干旱胁迫时根部进行大量表达,对抵御外界的干旱威胁起到关键作用,可能对提高陆地棉抗旱性方面具有一定的作用.  相似文献   

16.
根据棉花GhCCR1基因的cDNA序列设计引物,采用PCR技术从棉花中克隆了GhCCR1基因的DNA序列,并采用半定量RT-PCR方法分析了GhCCR1基因在不同发育阶段棉纤维中的表达情况.结果表明:GhCCR1编码区DNA序列长度为1 161 bp,包含4个外显子和3个内含子,内含子富含AT,所有外显子/内含子交接点都遵从gt/ag剪接规则.半定量RT-PCR检测表明,GhCCR1基因在不同发育阶段的棉纤维中均有表达,在开花后20 d的棉纤维中表达量最高,说明该基因可能参与调控棉纤维细胞的伸长和次生壁的增厚过程.  相似文献   

17.
纤维品质改良是我国棉花育种的主要目标之一,纤维特异或优势表达基因的挖掘是利用基因工程手段改良纤维品质的关键。根据苏棉12纤维中优势表达的GhRACK1 EST序列设计引物,通过RACE技术克隆了GhRACK1基因的全长cDNA。推导的氨基酸序列含有4个串联的WD基序,属于WD40重复家族,与已知的RACK1蛋白同源性达70%以上,PDB模拟的蛋白三维结构也与已知的RACK1蛋白结构相似。荧光定量PCR分析表明GhRACK1在纤维中的表达量比叶片中高20倍以上。研究结果为棉花纤维品质改良基因工程提供了新的基因资源。  相似文献   

18.
棉花LIM结构域基因(GhLIM1)的克隆和表达分析   总被引:12,自引:3,他引:12  
LIM结构域蛋白是一个重要的发育调控因子,参与基因转录,细胞骨架建成和信号传导等许多发育调控过程,胞质骨架是形成和稳定细胞形态以及传递物质,能量和信息的重要成分。为研究棉花纤维细胞发育过程中胞质骨架的形成和作用机理,通过棉花纤维EST序列整合,从陆地棉徐州142胚珠(含纤维)中扩增并克隆出棉花LIM结构域基因的编码区段。该棉花LIM结构域基因(GhL1M1)长848bp,包含一个570bp的开放阅读框,推导的氨基酸序列(189个氨基酸)与拟南芥,烟草和向日葵的LIM结构域蛋白有极高的同源性,而且两个LIM结构域完整,RT-PCR和Northerm杂交分析表明,该基因(GhL1M1)在陆地棉的根,茎尖,上胚轴,叶片,花蕾,花药,胚珠和不同发育时期的陆地棉纤维(4DPA、12DPA、18DPA)以及海岛棉纤维(18DPA)和中棉纤维(12DPA)中均有表达,但GhL1M1基因在茎尖,纤维和有纤维的胚珠中表达量更高,因此GhL1M1基因应与棉花纤维发育有密切关系。  相似文献   

19.
两个棉花Rac蛋白基因的克隆与表达分析   总被引:6,自引:0,他引:6  
为研究棉花纤维起始和伸长的分子机理,在棉花纤维EST序列分析的基础上,从棉花纤维中扩增并克隆了2个棉花Rac蛋白的cDNA基因,分别命名为GhRacA和GhRacB。GhRacA cDNA长959bp,推测的编码蛋白包含211个氨基酸。GhRacB cDNA长920bp,编码195个氨基酸的蛋白。GhRacA和GhRacB蛋白均含有GTP/GDP结合和激活区域、Effector区和碱性氨基酸区。GhRacB的C末端有保守的异戊烯基化位点CSIL,而GhRacA没有明显的异戊烯基化位点。序列比较分析表明,GhRacA和GhRacB是2个新的棉花Rac蛋白。RT-PCR分析表明,GhRacA和GhRacB在根、下胚轴、茎、叶和纤维中都有表达,但均在棉花纤维起始和伸长时期有优势表达,推测2个基因在棉花纤维的早期发育中可能有重要的功能。  相似文献   

20.
一个陆地棉bZIP蛋白cDNA的克隆及表达分析   总被引:2,自引:0,他引:2  
利用PCR筛选方法从陆地棉纤维cDNA文库中筛选到一个全长cDNA序列,命名为GhbZIP。其编码产物长度为645个氨基酸残基,序列中含有两个未知功能的保守区域DUF630和DUF632,而DUF632区中有一个类似碱性亮氨酸拉链基元;此外氨基酸序列中还存在一个富脯氨酸区和一个富苯丙氨酸区,因此该蛋白具有植物碱性亮氨酸拉链蛋白的结构特征。亲水性分析表明,GhbZIP为一个典型的膜蛋白。GhbZIP基因主要是在开花3d之后在胚珠和纤维细胞中表达,这表明该基因可能与棉纤维伸长过程中的基因表达调控有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号