首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用MOF-808结构中含有易于被取代的甲酸这一特性,选用一种结构中含有丰富含氮基团的羧酸分子,L-组氨酸,对微波法合成的MOF-808纳米颗粒进行了后合成改性修饰,在其孔道中引入了对CO_2具有较高亲和力的含氮官能团.进一步采用孔道修饰后的MOF-808(MOF-808-His)与聚酰亚胺(6FDA-DAM)复合制备了一种新型混合基质膜,结合气体分离性能测试与膜的微观结构表征系统地分析了孔道修饰对MOF-808/6FDA-DAM混合基质膜CO_2分离性能的影响.结果表明,MOF-808孔道内含氮官能团的引入能够明显改善其对CO_2的选择性吸附能力,进而提高混合基质膜的CO_2/CH_4分离性能.当MOF-808-His质量分数为10%时,混合基质膜的CO_2渗透通量为764 Barrer, CO_2/CH_4分离因子为32.4,比纯6FDA-DAM膜分别提高了104%和35%,超过了CO_2/CH_4分离的Robeson上限.  相似文献   

2.
纳滤膜的渗透和截留性能相互制约.金属有机骨架(MOFs)材料因其具有大孔隙率、高比表面积和孔径可调控的特点受到广泛关注,将MOFs作为纳米颗粒添加剂引入纳滤膜中,可有效缓解膜的选择性和渗透性之间的制约效应,并且赋予了纳滤膜一些其他的特点,如亲(疏)水性、抗菌性及抗污染性.本文介绍了应用于纳滤膜中MOFs的分类、特性及合...  相似文献   

3.
为了提高金属有机骨架多孔材料MIL-101对水体中碘离子的吸附性能,通过水热合成法制得Ag掺杂改性MIL-101材料,利用扫描电子显微镜、X射线衍射、比表面积及孔径分析、激光衍射粒度分析等技术手段对材料进行表征,并考察多种参数对吸附效果的影响。结果表明:纳米Ag主要存在于基体材料MIL-101的晶格中,对材料的晶体结构无显著破坏;N,N-二甲基甲酰胺(DMF)加乙醇的后处理方法能有效提高材料的吸附性能;改性后的材料表现出快速、高效的吸附性能;在痕量碘离子环境下,Ag掺杂质量分数为2%的改性MIL-101的饱和吸附量可达23 mg/g,吸附效率达到93%以上;在高浓度环境下,样品吸附效率随着Ag掺杂量的增加而提高。  相似文献   

4.
5.
金属有机框架材料(MOF)/聚合物混合基质膜(MMMs)通过结合MOF的分子筛效应和聚合物基质成本较低、加工性能好、机械强度高的特征,使其在气体分离领域展现出巨大的应用前景。然而由于MOF在聚合物基体中存在分散性差问题,极大地限制了其应用。采用溶剂热法合成金属框架材料ZIF-67,并通过溶液氧化法在ZIF-67表面修饰聚多巴胺(PDA)层制备ZIF-67@PDA纳米多孔材料。以4,4’-二氨基二苯醚-2,2’-双(3,4-二羧酸)六氟丙烷二酐(ODA-6 FDA)型含氟聚酰亚胺(FPI)为基体、ZIF-67和ZIF-67@PDA为填料,制备不同质量分数的ZIF-67/FPI和ZIF-67@PDA/FPI。通过FTIR、WAXD、TGA、SEM、比表面和孔径分布分析仪、气体渗透仪等测试对MMMs的结构和性能进行表征并测试了N2、O2、CO2、He 4种气体的渗透性。结果表明:经聚多巴胺修饰后的纳米微孔材料ZIF-67在聚合物基体中能均匀分散并为气体分子的通过提供快速通道,且表现出良好的热稳定性。ZIF-67@PDA对CO<...  相似文献   

6.
7.
以骨架结构极稳定的ZIF-90作为掺杂材料,通过后合成修饰(PSM)技术使用不同链长结构的胺烷对ZIF-90进行表面修饰,并探究不同链长结构的改性剂及其用量对ZIF-90与其Pebax基混合基质膜气体分离性能的影响.实验发现,胺烷的改性不仅不会改变ZIF-90的晶体结构,还能够在ZIF-90表面形成"绒毛"状结构,形成有机-有机高相容的界面.除此之外,该"绒毛"结构虽然会降低填料本身的比表面积及孔体积,但是在合适的长度与数量下会与聚合物产生某种特殊的有益于气体分离的相互作用,可以明显提高混合基质膜的分离性能.使用正丙胺改性的PZ90/Pebax系列混合基质膜相较于纯ZIF-90/Pebax, CO_2/N_2选择性与CO_2渗透性都有不同程度的提高,改性程度为20%时分离性能最佳,CO_2/N_2选择性为70,CO_2渗透率达到140 Barrer,与纯Pebax相比分别提高了45.8%和79.4%,接近2008年Robeson上限.  相似文献   

8.
混合基质膜(MMMs)结合了传统有机膜材料和无机纳米材料的优势,突破了传统聚合物膜材料的渗透性与选择性之间的权衡限制,即"trade-off"效应,为高效的分离膜材料研究提供了新途径.但由于聚合物基体与纳米填料之间的相容性问题,往往在有机-无机相界面中形成空穴、僵化等非选择性缺陷.本文综述了MMMs常用的克服界面缺陷的调控技术,主要有聚合物基体的物化调控、纳米填料的物化调控、添加界面黏合剂以及后处理,并针对目前的调控方法提出存在的问题和展望,为高性能膜分离材料的制备方法提供新思路.  相似文献   

9.
选用Pebax1657和SAPO-34为膜材料,分别采用醋酸和1-丁醇为溶剂,通过流延法制备Pebax/SAPO-34混合基质膜(MMMs).研究发现,溶剂能显著地影响膜的结构形态以及渗透性能.纯Pebax膜的气体渗透系数受溶剂的影响较大,而选择性受溶剂影响不大.对于分子筛含量较高(质量分数33%)的MMMs,以1-丁醇为溶剂时,分子筛的分散均匀程度更高,但就材料的成膜性而言,醋酸为溶剂时更好.MMMs中气体渗透系数的变化是结晶度、扩散曲度、链段运动能力和膜形态等因素的共同作用的结果.醋酸为溶剂时,由于相分离的发生,气体的渗透系数出现突跃,最大提高到纯Pebax膜的3倍.1-丁醇为溶剂时,除H2外,气体渗透系数先出现一定程度的提高,而后由于受到链段僵化以及扩散曲度的影响而降低.  相似文献   

10.
以ZIF-8为掺杂剂,通过对混合基质聚合物膜高温炭化制备了混合基质炭膜.通过XRD、SEM、N2吸附等表征方法探究了ZIF-8高温热解前后微观形貌和孔结构特征对炭膜微孔结构和炭结构的影响,并考察了ZIF-8掺杂量与炭化温度对混合基质炭膜C3H6/C3H8渗透分离性能的影响.结果表明,ZIF-8经550℃热处理后仍能够部分保持其微观形貌和孔结构,同时ZIF-8热解衍生多孔炭的引入增加了炭膜具有筛分功能的极微孔含量,因而显著提高了混合基质炭膜对C3H6/C3H8的分离选择性.在ZIF-8掺杂质量分数1%和炭化温度550℃下,所制备ZIF-8混合基质炭膜的C3H6渗透系数高达174 Barrer, C3H6/C3H8分离选择性为14.4,与未掺杂的纯炭膜相比(C  相似文献   

11.
12.
13.
能源与环境是人类生存和发展的必要条件,两者协调发展是社会实现可持续发展的重要保证。近几年来,人类赖以生存的化石燃料所带来的负面影响逐渐受到社会的关注,而化石燃料燃烧所释放出的CO2是造成温室效应的主要原因。因此在低碳经济环境下开发出高效环保的碳捕获和封存技术,对能源循环利用及环境保护起到至关重要的作用。使用胺溶液进行洗涤及吸收CO2是工业上捕获和存储(CCS)最常用的技术之一(例如从电厂烟气中分离CO2),该法可以大幅减少CO2的排放量,但同时也会增大工厂的能源消耗(25%~40%),从而大幅增加额外成本。胺洗涤的其他缺点包括碱溶液对设备的腐蚀、溶剂的损失、大量产热引起的胺降解以及捕获之后不易被分离出来。另一种捕获CO2的方法是采用高温下吸收(化学吸附)的固体材料如碱金属陶瓷、固体胺、层状双氢氧化物或钙基吸附剂,但此类方法的能量消耗和对水分子及其他组分的敏感性限制了其应用范围。此外,采用聚合物或无机膜,在不同的机制下选择性分离混合气体也是一种可行的方法,但很难获得具有高稳定性、高选择性和高通量的薄膜,并且提高膜的吸附分离作用和选择性非常必要。对于固体吸附剂而言,高压下多孔材料对CO2的捕获是以吸附剂与被吸附物相互作用为主,而在低压或低CO2浓度下的选择性捕获主要受吸附剂与被吸附物相互作用以及吸附剂对CO2的化学亲和力两者共同影响。金属有机骨架化合物(MOFs)具有高结晶度、高比表面积和可调的孔隙结构,在气体吸附尤其是CO2捕获方面展示出巨大的潜力。相对于活性炭、沸石等固体吸附剂来说,MOFs具有更高的吸附选择性。将其应用于碳捕获和封存技术中,可以大幅拓宽CO2吸附剂的可选择范围,在提高吸附选择性的同时,也可以有效地降低成本。目前,有望采用MOFs材料捕获CO2的场合包括发电厂的碳捕集、天然气中CH4/CO2的分离、交通工具排放的CO2的收集甚至直接从空气中捕获。因此,研发能够高效吸附分离CO2的MOFs材料对于缓解环境压力意义重大。本文概括了CO2吸附模型的建立方法,提出了几种提高MOFs对CO2捕获量的策略。如提高开放金属位点的密度、掺杂金属或氮原子、调节孔径或进行氨基功能化以及合成MOFs复合材料等,并比较了不同方法对于改善低压条件下CO2吸附量的影响,有望将其应用于捕获燃烧后烟道气、汽车尾气以及其他小型排放源中的CO2。  相似文献   

14.
针对聚偏氟乙烯(PVDF)超滤膜亲水性差、易污染的问题,利用金属有机骨架材料MOF-5作为添加剂,采用非溶剂诱导相分离法(NIPS)制备出MOF-5/PVDF混合基质膜并研究其抗有机污染性能.纯水通量和牛血清蛋白(BSA)截留实验表明,与基膜相比,MOF-5/PVDF混合基质膜在渗透性和选择性方面都有较大提升.对比考察...  相似文献   

15.
采用“自下而上”策略,成功合成了2种含薄荷酯的手性共轭微孔聚合物(CCMP).以CCMP为分散相,醋酸纤维素(CA)、乙基纤维素(EC)为基质,采用相转换法,制备了3种混合基质膜.扫描电子显微镜显示,CCMP在基质中分散均匀.在氨基酸外消旋体的对映体分离时,当分散相CDCMP-1质量分数为4%,混合基质膜对(D,L)-苯丙氨酸的透过率为7.75×10-9 m2/h,对映体过量为60.6%ee,表现出较高的对映体分离性能.  相似文献   

16.
以纳米级ZIF-8晶体粒子为晶种,利用晶种诱导二次生长法在α-Al2O3陶瓷管载体上制备出连续的ZIF-8膜,并详细考察了晶种涂层液中晶种含量、成膜温度和添加剂PEI、甲酸钠用量等参数对ZIF-8成膜的调控影响.经SEM、XRD和气体渗透分析结果表明:制备的ZIF-8纳米粒子的粒径约为100~150 nm,粒度分布较均匀,适宜作为成膜的晶种;在晶种液中添加适量的PEI作为偶联剂有利于连续ZIF-8晶种层及膜的形成;在成膜液中添加适量的甲酸钠能有效阻止载体表面晶种层的溶解脱落.SEM显示所得ZIF-8膜的晶体粒径均一、晶粒间连接紧密且无明显裂痕,膜层厚度约为18μm.单组分气体渗透测试可知,H2/CO2的分离因数为5.4,H2/CH4的分离因数为2.56,气体通过ZIF-8膜均属于努森扩散范围.  相似文献   

17.
18.
通过水热合成法合成了有机配体不同的前驱体铈基金属-有机骨架,经过400℃煅烧得到CeO2催化剂用于催化氧化甲苯,并研究了催化剂的性能。结果表明,在反应温度为180~260℃、质量空速为60000mL/(g·h)条件下,催化剂活性顺序为CeO2-B>CeO2-M>CeO2-A(B、M、A分别是有机配体4,4′-联吡啶、2-甲基咪唑、2-氨基对苯二甲酸的英文首字母)。CeO2-B在215℃对甲苯的降解率达到92.9%,在30h稳定性测试中保持优异的催化性能,其优异的催化活性得益于较大的比表面积(126.72m2/g)、孔容(0.19cm3/g)、平均孔径(5.44nm)、较高的Ce3+含量(19.97%)和表面化学吸附氧含量(43.63%)。X射线衍射、全自动比表面积分析仪、扫描电子显微镜、氢气-程序升温还原、X射线光电子能谱等表征证明,有机配体会影响催化剂的比表面积、孔容、孔径和粒径等物理性质。  相似文献   

19.
为了改善混合基质膜中分散相与连续相间的兼容性,设计了一种新型的离子液体负载金属有机骨架(IL@UiO-66-NH_2)纳米材料作为填料,通过涂覆法制备聚酰亚胺基(6FDA-ODA)混合基质膜,并研究IL@UiO-66-NH_2含量及进料压力对气体分离性能的影响.利用SEM、XRD和FTIR对IL@UiO-66-NH_2纳米颗粒和混合基质膜进行表征.结果表明,IL@UiO-66-NH_2纳米颗粒均匀分散于聚酰亚胺基质中并且没有出现非选择性孔腔.利用混合基质膜构建CO_2/CH_4分离系统,当混合基质膜中IL@UiO-66-NH_2负载量为质量分数15%时,CO_2的渗透性为26.32 Barrer,CO_2/CH_4的分离因子为53.91,比纯聚酰亚胺膜分别提高了46.55%和26.23%.  相似文献   

20.
聚醚共聚酰胺复合气体分离膜的制备与分离性能   总被引:1,自引:0,他引:1  
以湿涂方式,采用浸渍涂层方法,通过溶剂蒸发制得聚醚共聚酰胺PEBA2533平板复合气体分离膜,探讨了在复合膜制备过程中,涂层液溶剂的选择、底膜、涂层浓度、涂层温度以及固化干燥时间等因素对CO2/N2体系渗透分离性能的影响.正丙醇和水的互溶性导致了大量表面缺陷的形成,使得以正丙醇为溶剂制得的复合气体分离膜对CO2/N2体系没有选择性.以正丁醇做溶剂,涂层质量分数大于5%时,形成具有致密分离层的复合气体分离膜,CO2/N2分离系数达到本征分离性能.涂层温度的升高促使复合膜表面缺陷的增加,导致CO2/N2的分离系数减小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号