首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HtrA2/Omi is a mammalian mitochondrial serine protease, and was found to have dual roles in mammalian cells, not only acting as an apoptosis-inducing protein but also maintaining mitochondrial homeostasis. PDZ domain is one of the most important protein-protein interaction modules and is involved in a variety of important cellular functions, such as signal transduction, degradation of proteins, and formation of cytoskeleton. Recently, it was reported that the PDZ domain of HtrA2/Omi might regulate proteolytic activity through its interactions with ligand proteins. In this study, we rapidly characterized the binding properties of HtrA2/Omi PDZ domain by validation screening of the PDZ ligand library with yeast two-hybrid approach. Then, we predicted its novel ligand proteins in human proteome and reconfirmed them in the yeast two-hybrid system. Finally, we analyzed the smallest networks bordered by the shortest path length between the protein pairs of novel interactions to evaluate the confidence of the identified interactions. The results revealed some novel binding properties of HtrA2/Omi PDZ domain. Besides the reported Class II PDZ motif, it also binds to Class I and Class III motifs, and exhibits restricted variability at P−3, which means that the P−3 residue is selected according to the composition of the last three residues. Seven novel ligand proteins of HtrA2/Omi PDZ domain were discovered, providing significant clues for further clarifying the roles of HtrA2/Omi. Moreover, this study proves the high efficiency and practicability of the newly developed validation screening of candidate ligand library method for binding property characterization of peptide-binding domains.  相似文献   

2.
High-temperature requirement A (HtrA) and its homologs contain a serine protease domain followed by one or two PDZ domains. Bacterial HtrA proteins and the mitochondrial protein HtrA2/Omi maintain cell function by acting as both molecular chaperones and proteases to manage misfolded proteins. The biological roles of the mammalian family members HtrA1 and HtrA3 are less clear. We report a detailed structural and functional analysis of the PDZ domains of human HtrA1 and HtrA3 using peptide libraries and affinity assays to define specificity, structural studies to view the molecular details of ligand recognition, and alanine scanning mutagenesis to investigate the energetic contributions of individual residues to ligand binding. In common with HtrA2/Omi, we show that the PDZ domains of HtrA1 and HtrA3 recognize hydrophobic polypeptides, and while C-terminal sequences are preferred, internal sequences are also recognized. However, the details of the interactions differ, as different domains rely on interactions with different residues within the ligand to achieve high affinity binding. The results suggest that mammalian HtrA PDZ domains interact with a broad range of hydrophobic binding partners. This promiscuous specificity resembles that of bacterial HtrA family members and suggests a similar function for recognizing misfolded polypeptides with exposed hydrophobic sequences. Our results support a common activation mechanism for the HtrA family, whereby hydrophobic peptides bind to the PDZ domain and induce conformational changes that activate the protease. Such a mechanism is well suited to proteases evolved for the recognition and degradation of misfolded proteins.  相似文献   

3.
The mitochondrial serine protease HtrA2/Omi helps to maintain mitochondrial function by handling misfolded proteins in the intermembrane space. In addition, HtrA2/Omi has been implicated as a proapoptotic factor upon release into the cytoplasm during the cell death cascade. The protein contains a C-terminal PDZ domain that packs against the protease active site and inhibits proteolytic activity. Engagement of the PDZ domain by peptide ligands has been shown to activate the protease and also has been proposed to mediate substrate recognition. We report a detailed structural and functional analysis of the human HtrA2/Omi PDZ domain using peptide libraries and affinity assays to define specificity, X-ray crystallography to view molecular details of PDZ-ligand interactions, and alanine-scanning mutagenesis to probe the peptide-binding groove. We show that the HtrA2/Omi PDZ domain recognizes both C-terminal and internal stretches of extended, hydrophobic polypeptides. High-affinity ligand recognition requires contacts with up to five hydrophobic side chains by distinct sites on the PDZ domain. However, no particular residue type is absolutely required at any position, and thus, the HtrA2/Omi PDZ domain appears to be a promiscuous module adapted to recognize unstructured, hydrophobic polypeptides. This type of specificity is consistent with the biological role of HtrA2/Omi in mitochondria, which requires the recognition of diverse, exposed stretches of hydrophobic sequences in misfolded proteins. The findings are less consistent with, but do not exclude, a role for the PDZ domain in targeting the protease to specific substrates during apoptosis.  相似文献   

4.
Inhibitor of apoptosis proteins (IAPs) prevent apoptosis through direct inhibition of caspases. The serine protease HtrA2/Omi has an amino-terminal IAP interaction motif like that found in Reaper, which displaces IAPs from caspases, leading to enhanced caspase activity. The cell death-promoting properties of HtrA2/Omi are not only exerted through its capacity to oppose IAP inhibition of caspases but also through its integral serine protease activity. We have used peptide libraries to determine the optimal substrate sequence for cleavage by HtrA2 and also the preferred binding sequence for its PDZ domain. Using these peptides, we show that the PDZ domain of HtrA2/Omi suppresses the proteolytic activity unless it is engaged by a binding partner. Subjecting HtrA2/Omi to heat shock treatment also increases its protease activity. Unexpectedly, binding of X-linked inhibitor of apoptosis protein (XIAP) to the Reaper motif of HtrA2/Omi results in a marked increase in proteolytic activity, suggesting a new role for IAPs. When HtrA2/Omi is released from mitochondria following an apoptotic stimulus, binding to IAPs may switch their function from caspase inhibition to serine protease activation. Thus although IAP overexpression can suppress caspase activation, it could have the opposite effect on HtrA2/Omi-dependent cell death. This, together with the ability of HtrA2/Omi to degrade IAPs, may limit the overall cellular protection that can be provided by these proteins.  相似文献   

5.
High-temperature requirement A (HtrA), a highly conserved family of serine protease, plays crucial roles in protein quality control in prokaryotes and eukaryotes. The HtrA protein contains a C-terminal PDZ domain that mediates the proteolytic activity. Here we reported the solution structure of the HtrA PDZ domain from Streptococcus pneumoniae by NMR spectroscopy. Our results showed that the structure of HtrA PDZ domain, which contains three α-helices and five β-strands, illustrates conservation within the canonical PDZ domains. In addition, we demonstrated the interactions between S. pneumoniae HtrA PDZ domain and peptides with the motif XXX–YYF–COOH by surface plasmon resonance. Besides, we identified the ligand binding surface and the critical residues responsible for ligand binding of HtrA PDZ domain by chemical shift perturbation and site-directed mutagenesis.  相似文献   

6.
The C-terminal tail of presenilin regulates Omi/HtrA2 protease activity   总被引:10,自引:0,他引:10  
Presenilin mutations are responsible for most cases of autosomal dominant inherited forms of early onset Alzheimer disease. Presenilins play an important role in amyloid beta-precursor processing, NOTCH receptor signaling, and apoptosis. However, the molecular mechanisms by which presenilins regulate apoptosis are not fully understood. Here, we report that presenilin-1 (PS1) regulates the proteolytic activity of the serine protease Omi/HtrA2 through direct interaction with its regulatory PDZ domain. We show that a peptide corresponding to the cytoplasmic C-terminal tail of PS1 dramatically increases the proteolytic activity of Omi/HtrA2 toward the inhibitor of apoptosis proteins and beta-casein and induces cell death in an Omi/HtrA2-dependent manner. Consistent with these results, ectopic expression of full-length PS1, but not PS1 lacking the C-terminal PDZ binding motif, potentiated Omi/HtrA2-induced cell death. Our results suggest that the C terminus of PS1 is an activation peptide ligand for the PDZ domain of Omi/HtrA2 and may regulate the protease activity of Omi/HtrA2 after its release from the mitochondria during apoptosis. This mechanism of Omi/HtrA2 activation is similar to the mechanism of activation of the related bacterial DegS protease by the outer-membrane porins.  相似文献   

7.
The human HtrA family of serine proteases (HtrA1, HtrA2, HtrA3, and HtrA4) are the key enzymes associated with pregnancy and closely related to the development and progression of many pathological events. Previously, it was found that halogen substitution at the indole moiety of peptide Trp‐1 residue can form a geometrically satisfactory halogen bond with the Drosophila discs large, zona occludens‐1 (PDZ) domain of HtrA proteases. Here, we attempt to systematically investigate the effect of substitution with 4 halogen types and 2 indole positions on the binding affinity and specificity of peptide ligands to the 4 HtrA PDZ domains. The complex structures, interaction energies, halogen‐bonding strength, and binding affinity of domain‐peptide systems were modeled, analyzed, and measured via computational modeling and fluorescence‐based assay. It is revealed that there is a compromise between the local rearrangement of halogen bond involving different halogen atoms and the global optimization of domain‐peptide interaction; the substitution position is fundamentally important for peptide‐binding affinity, while the halogen type can effectively shift peptide selectivity between the 4 domains. The HtrA1‐PDZ and HtrA4‐PDZ as well as HtrA2‐PDZ and HtrA3‐PDZ respond similarly to different halogen substitutions of peptide; –Br substitution at R2‐position and –I substitution at R4‐position are most effective in improving peptide selectivity for HtrA1‐PDZ/HtrA4‐PDZ and HtrA2‐PDZ/HtrA3‐PDZ, respectively; –F substitution would not address substantial effect on peptide selectivity for all the 4 domains. Consequently, the binding affinities of a native peptide ligand DSRIWWV–COOH as well as its 4 R2‐halogenated counterparts were determined as 1.9, 1.4, 0.5, 0.27, and 0.92 μM, which are basically consistent with computational analysis. This study would help to rationally design selective peptide inhibitors of HtrA family members by using different halogen substitutions.  相似文献   

8.
PDZ domains are small globular domains that recognize the last 4-7 amino acids at the C-terminus of target proteins. The specificity of the PDZ-ligand recognition is due to side chain-side chain interactions, as well as the positioning of an alpha-helix involved in ligand binding. We have used computer-aided protein design to produce mutant versions of a Class I PDZ domain that bind to novel Class I and Class II target sequences both in vitro and in vivo, thus providing an alternative to primary antibodies in western blotting, affinity chromatography and pull-down experiments. Our results suggest that by combining different backbone templates with computer-aided protein design, PDZ domains could be engineered to specifically recognize a large number of proteins.  相似文献   

9.
Allosteric activation of DegS, a stress sensor PDZ protease   总被引:3,自引:0,他引:3  
Sohn J  Grant RA  Sauer RT 《Cell》2007,131(3):572-583
  相似文献   

10.
The human PAG gene product (hPag), one member of the TSA/AhpC family, is overexpressed by oxidative stress, which causes apoptosis. To investigate the apoptotic signal transduction mediated by hPag, hPag-binding protein was screened using the yeast two-hybrid system. Omi/HtrA2 was identified as the hPag-binding protein. Omi/HtrA2, a potent proapoptotic factor, is released from the mitochondria into the cytoplasm as the mature form showing serine protease activity during apoptosis in response to oxidative stress. We found that hPag was able to interact with the mature form of Omi/HtrA2, not with the precursor form of Omi/HtrA2. The binding of Omi/HtrA2 to hPag was shown to involve the PDZ-binding domain in Omi/HtrA2. Also, the carboxyl-terminal domain of hPag was shown to be critical for the protein interaction. Using the yeast two-hybrid system and in vitro binding assay, the reduced form of hPag was able to interact with Omi/HtrA2. Interestingly, the protease activity given by the mature form of Omi/HtrA2 was significantly activated by the binding to hPag. Taken together, these results suggest that the specific protein interaction may participate as a molecular switch in modulating cell death in response to oxidative stress.  相似文献   

11.
HtrA2/Omi, a mitochondrial serine protease in mammals, is important in programmed cell death. However, the underlining mechanism of HtrA2/Omi-mediated apoptosis remains unclear. Analogous to the bacterial homolog HtrA (DegP), the mature HtrA2 protein contains a central serine protease domain and a C-terminal PDZ domain. The 2.0 A crystal structure of HtrA2/Omi reveals the formation of a pyramid-shaped homotrimer mediated exclusively by the serine protease domains. The peptide-binding pocket of the PDZ domain is buried in the intimate interface between the PDZ and the protease domains. Mutational analysis reveals that the monomeric HtrA2/Omi mutants are unable to induce cell death and are deficient in protease activity. The PDZ domain modulates HtrA2/Omi-mediated cell death activity by regulating its serine protease activity. These structural and biochemical observations provide an important framework for deciphering the mechanisms of HtrA2/Omi-mediated apoptosis.  相似文献   

12.
The G protein gamma13 subunit (Ggamma13) is expressed in taste and retinal and neuronal tissues and plays a key role in taste transduction. We identified PSD95, Veli-2, and other PDZ domain-containing proteins as binding partners for Ggamma13 by yeast two-hybrid and pull-down assays. In two-hybrid assays, Ggamma13 interacted specifically with the third PDZ domain of PSD95, the sole PDZ domain of Veli-2, and the third PDZ domain of SAP97, a PSD95-related protein. Ggamma13 did not interact with the other PDZ domains of PSD95. Coexpression of Ggamma13 with its Gbeta1 partner did not interfere with these two-hybrid interactions. The physical interaction of Ggamma13 with PSD95 in the cellular milieu was confirmed in pull-down assays following heterologous expression in HEK293 cells. The interaction of Ggamma13 with the PDZ domain of PSD95 was via the C-terminal CAAX tail of Ggamma13 (where AA indicates the aliphatic amino acid); alanine substitution of the CTAL sequence at the C terminus of Ggamma13 abolished its interactions with PSD95 in two-hybrid and pull-down assays. Veli-2 and SAP97 were identified in taste tissue and in Ggamma13-expressing taste cells. Coimmunoprecipitation of Ggamma13 and PSD95 from brain and of Ggamma13 and SAP97 from taste tissue indicates that Ggamma13 interacts with these proteins endogenously. This is the first demonstration that PDZ domain proteins interact with heterotrimeric G proteins via the CAAX tail of Ggamma subunits. The interaction of Ggamma13 with PDZ domain-containing proteins may provide a means to target particular Gbetagamma subunits to specific subcellular locations and/or macromolecular complexes involved in signaling pathways.  相似文献   

13.
A diverse family of PDZ domains has been identified, but the rules that govern their ligand specificity are not clear. Here we propose a novel classification of PDZ domains based on the nature of amino acids in the two critical positions in the PDZ domain fold. Using these principles, we classified PDZ domains present in the SMART database. Using yeast two-hybrid, in vitro pull-down and plasmon surface resonance assays, we demonstrated that in agreement with their position in the proposed classification the Mint1-1, hINADL-5, and PAR6 PDZ domains display similar dual ligand specificity. The proposed classification helps to organize PDZ domain containing proteins.  相似文献   

14.
The mitochondrial serine protease HtrA2/Omi: an overview   总被引:2,自引:0,他引:2  
The HtrA family refers to a group of related oligomeric serine proteases that combine a trypsin-like protease domain with at least one PDZ interaction domain. Mammals encode four HtrA proteases, named HtrA1-4. The protease activity of the HtrA member HtrA2/Omi is required for mitochondrial homeostasis in mice and humans and inactivating mutations associated with neurodegenerative disorders such as Parkinson's disease. Moreover, HtrA2/Omi is released in the cytosol, where it contributes to apoptosis through both caspase-dependent and -independent pathways. Here, we review the current knowledge of HtrA2/Omi biology and discuss the signaling pathways that underlie its mitochondrial and apoptotic functions from an evolutionary perspective.  相似文献   

15.
磷脂酶C β (PLCβ)在G蛋白偶联受体 (GPCR)介导的细胞信号转导中发挥重要作用. 通过水解磷脂酰肌醇4,5二磷酸 (PIP2),磷脂酶C β可以产生3种重要的第二信使分子:二乙酰甘油 (DAG)、三磷酸肌醇 (IP3)和质子. 在果蝇中,磷脂酶C β通过它的羧基末端盘状同源区域结合模块 (PBM)与盘状同源区域 (PDZ)支架蛋白-失活无后电位D蛋白 (INAD)相互作用,从而调节果蝇的光信号传导 . 在哺乳动物中,磷脂酶C β家族有4个亚型,每1个亚型的羧基末端都有1个典型的盘状同源区域结合模块. 这一结构特点提示我们,磷脂酶C β可能通过其羧基末端的盘状同源区域结合模块与盘状同源区域支架蛋白相互作用,进而调节它们自身的细胞定位和功能. 然而,目前仍对哺乳动物磷脂酶C β家族的盘状同源区域结合蛋白知之甚少. 本文运用分析型凝胶过滤和等温滴定量热技术,系统地研究了不同磷脂酶Cβ亚型的羧基末端盘状同源区域结合模块与不同盘状同源区域蛋白质的结合. 结果表明,磷脂酶Cβ2的羧基末端盘状同源区域结合模块,可以特异地与含有4个盘状同源区域的支架蛋白-盘状同源区域蛋白1 (PDZK1)以2∶1的方式相互结合. 进一步的测定显示,磷脂酶C β2羧基末端盘状同源区域结合模块在盘状同源区域蛋白1上的结合位点为第1和第3个盘状同源区域,而它们与磷脂酶Cβ2的解离常数分别为11.8±3.4 μmol/L 和33.3±8.7 μmol/L.  相似文献   

16.
The T-cell lymphoma invasion and metastasis gene 1 (Tiam1) is a guanine exchange factor (GEF) for the Rho-family GTPase Rac1 that is crucial for the integrity of adherens junctions, tight junctions, and cell-matrix interactions. This GEF contains several protein-protein interaction domains, including a PDZ domain. Earlier studies identified a consensus PDZ-binding motif and a synthetic peptide capable of binding to the Tiam1 PDZ domain, but little is known about its ligand specificity and physiological role in cells. Here, we investigated the structure, specificity, and function of the Tiam1 PDZ domain. We determined the crystal structures of the Tiam1 PDZ domain free and in complex with a “model” peptide, which revealed the structural basis for ligand specificity. Protein database searches using the consensus PDZ-binding motif identified two eukaryotic cell adhesion proteins, Syndecan1 and Caspr4, as potential Tiam1 PDZ domain binding proteins. Equilibrium binding experiments confirmed that C-terminal peptides derived from Syndecan1 and Caspr4 bound the Tiam1 PDZ domain. NMR chemical shift perturbation experiments indicated that the Tiam1 PDZ/Syndecan1 and PDZ/Caspr4 complexes were structurally distinct and identified key residues likely to be responsible for ligand selectivity. Moreover, cell biological analysis established that Syndecan1 is a physiological binding partner of Tiam1 and that the PDZ domain has a function in cell-matrix adhesion and cell migration. Collectively, our data provide insight into the structure, specificity, and function of the Tiam1 PDZ domain. Importantly, our data report on a physiological role for the Tiam1 PDZ domain and establish a novel link between two previously unrelated signal transduction pathways, both of which are implicated in cancer.  相似文献   

17.
In order to identify proteins that bind to the PDZ domain of Erbin, we tested the C-termini of several proteins in a yeast two-hybrid assay. ErbB2, APC, beta-catenin, c-Rel and HTLV-1 Tax were identified as ligands of the PDZ domain of Erbin. The interactions were verified by co-immunoprecipitation experiments. These findings demonstrate the promiscuity of the PDZ domain of Erbin.  相似文献   

18.
ped/pea-15 is a ubiquitously expressed 15-kDa protein featuring a broad anti-apoptotic function. In a yeast two-hybrid screen, the pro-apoptotic Omi/HtrA2 mitochondrial serine protease was identified as a specific interactor of the ped/pea-15 death effector domain. Omi/HtrA2 also bound recombinant ped/pea-15 in vitro and co-precipitated with ped/pea-15 in 293 and HeLa cell extracts. In these cells, the binding of Omi/HtrA2 to ped/pea-15 was induced by UVC exposure and followed the mitochondrial release of Omi/HtrA2 into the cytoplasm. Upon UVC exposure, cellular ped/pea-15 protein expression levels decreased. This effect was prevented by the ucf-101 specific inhibitor of the Omi/HtrA2 proteolytic activity, in a dose-dependent fashion. In vitro incubation of ped/pea-15 with Omi/HtrA2 resulted in ped/pea-15 degradation. In intact cells, the inhibitory action of ped/pea-15 on UVC-induced apoptosis progressively declined at increasing Omi/HtrA2 expression. This further effect of Omi/HtrA2 was also inhibited by ucf-101. In addition, ped/pea-15 expression blocked Omi/HtrA2 co-precipitation with the caspase inhibitor protein XIAP and caspase 3 activation. Thus, in part, apoptosis following Omi/HtrA2 mitochondrial release is mediated by reduction in ped/pea-15 cellular levels. The ability of Omi/HtrA2 to relieve XIAP inhibition on caspases is modulated by the relative levels of Omi/HtrA2 and ped/pea-15.  相似文献   

19.
The LAP (leucine-rich repeat and PDZ-containing) family of proteins play a role in maintaining epithelial and neuronal cell size, and mutation of these proteins can have oncogenic consequences. The LAP protein Erbin has been implicated previously in a number of cellular activities by virtue of its PDZ domain-dependent association with the C termini of both ERB-B2 and the p120-catenins. The present work describes the NMR structure of Erbin PDZ in complex with a high affinity peptide ligand and includes a comprehensive energetic analysis of both the ligand and PDZ domain side chains responsible for binding. C-terminal phage display has been used to identify preferred ligands, whereas binding affinity measurements provide precise details of the energetic importance of each ligand side chain to binding. Alanine and homolog scanning mutagenesis (in a combinatorial phage display format) identifies Erbin side chains that make energetically important contacts with the ligand. The structure of a phage-optimized peptide (Ac-TGW(-4)ETW(-1)V; IC(50) = approximately 0.15 microm) in complex with Erbin PDZ provides a structural context to understand the binding energetics. In particular, the very favorable interactions with Trp(-1) are not Erbin side chain-mediated (and therefore may be generally applicable to many PDZ domains), whereas the beta2-beta3 loop provides a binding site for the Trp(-4) side chain (specific to Erbin because it has an unusually long loop). These results contribute to a growing appreciation for the importance of at least five ligand C-terminal side chains in determining PDZ domain binding energy and highlight the mechanisms of ligand discrimination among the several hundred PDZ domains present in the human genome.  相似文献   

20.
PDZ domains most commonly bind the C‐terminus of their protein targets. Typically the C‐terminal four residues of the protein target are considered as the binding motif, particularly the C‐terminal residue (P0) and third‐last residue (P‐2) that form the major contacts with the PDZ domain's “binding groove”. We solved crystal structures of seven human PDZ domains, including five of the seven PDLIM family members. The structures of GRASP, PDLIM2, PDLIM5, and PDLIM7 show a binding mode with only the C‐terminal P0 residue bound in the binding groove. Importantly, in some cases, the P‐2 residue formed interactions outside of the binding groove, providing insight into the influence of residues remote from the binding groove on selectivity. In the GRASP structure, we observed both canonical and noncanonical binding in the two molecules present in the asymmetric unit making a direct comparison of these binding modes possible. In addition, structures of the PDZ domains from PDLIM1 and PDLIM4 also presented here allow comparison with canonical binding for the PDLIM PDZ domain family. Although influenced by crystal packing arrangements, the structures nevertheless show that changes in the positions of PDZ domain side‐chains and the αB helix allow noncanonical binding interactions. These interactions may be indicative of intermediate states between unbound and fully bound PDZ domain and target protein. The noncanonical “perpendicular” binding observed potentially represents the general form of a kinetic intermediate. Comparison with canonical binding suggests that the rearrangement during binding involves both the PDZ domain and its ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号