首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Propionic and methylmalonic acidemic patients have severe neurologic symptoms whose etiopathogeny is still obscure. Since increase of lactic acid is detected in the urine of these patients, especially during metabolic decompensation when high concentrations of methylmalonate (MMA) and propionate (PA) are produced, it is possible that cellular respiration may be impaired in these individuals. Therefore, we investigated the effects of MMA and PA (1, 2.5 and 5 mM), the principal metabolites which accumulate in these conditions, on the mitochondrial respiratory chain complex activities succinate: 2,6-dichloroindophenol (DCIP) oxireductase (complex II); succinate: cytochrome c oxireductase (complexII+CoQ+III); NADH: cytochrome c oxireductase (complex I+CoQ+complex III); and cytochrome c oxidase (COX) (complex IV) from cerebral cortex homogenates of young rats. The effect of MMA on ubiquinol: cytochrome c oxireductase (complex III) and NADH: ubiquinone oxireductase (complex I) activities was also tested. Control groups did not contain MMA and PA in the incubation medium. MMA significantly inhibited complex I+III (32–46%), complex I (61–72%), and complex II+III (15–26%), without affecting significantly the activities of complexes II, III and IV. However, by using 1 mM succinate in the assay instead of the usual 16 mM concentration, MMA was able to significantly inhibit complex II activity in the brain homogenates. In contrast, PA did not affect any of these mitochondrial enzyme activities. The effect of MMA and PA on succinate: phenazine oxireductase (soluble succinate dehydrogenase (SDH)) was also measured in mitochondrial preparations. The results showed significant inhibition of the soluble SDH activity by MMA (11–27%) in purified mitochondrial fractions. Thus, if the in vitro inhibition of the oxidative phosphorylation system is also expressed under in vivo conditions, a deficit of brain energy production might explain some of the neurological abnormalities found in patients with methylmalonic acidemia (MMAemia) and be responsible for the lactic acidemia/aciduria identified in some of them.  相似文献   

2.
Lifelong caloric restriction (CR) reduces the rate of mitochondrial oxidant production and the accumulation of oxidized proteins and prevents some of the age-associated decline in 20S proteasome activity. However, few studies have investigated how rapidly the beneficial effects of CR take place. We investigated whether 2 mo of CR in 6-mo-old rats would be of sufficient duration to elicit these beneficial changes. Mitochondrial oxidant production was significantly diminished in the CR rats compared with the ad libitum-fed animals. Short-term CR also caused a significant decrease in mitochondrial superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities, but there were no differences in cytosolic SOD and GPX activities, whereas mitochondrial and cytosolic catalase (CAT) activity was increased with CR. However, protein carbonyl content was significantly elevated in both the mitochondrial and cytosolic fractions from CR rats. Of the three major 20S proteasome activities (chymotrypsin-like, trypsin-like, and peptidylglutamyl-peptide hydrolase), the peptidylglutamyl-peptide hydrolase activity was significantly elevated in the CR animals, possibly because of the fact that there were more oxidized proteins to be degraded. Although fewer oxidants were produced in the CR animals, it is possible that the ability to scavenge oxidants was transiently suppressed because of the reduction in mitochondrial antioxidant enzyme activities, which may explain the observed increases in carbonyl content.  相似文献   

3.
Dehydroepiandrosterone (DHEA) treatment of rats decreases gain of body weight without affecting food intake; simultaneously, the activities of liver malic enzyme and cytosolic glycerol-3-P dehydrogenase are increased. In the present study experiments were conducted to test the possibility that DHEA enhances thermogenesis and decreases metabolic efficiency via trans-hydrogenation of cytosolic NADPH into mitochondrial FADH2 with a consequent loss of energy as heat. The following results provide evidence which supports the proposed hypothesis: (a) the activities of cytosolic enzymes involved in NADPH production (malic enzyme, cytosolic isocitrate dehydrogenase, and aconitase) are increased after DHEA treatment; (b) cytosolic glycerol-3-P dehydrogenase may use both NAD+ and NADP+ as coenzymes; (c) activities of both cytosolic and mitochondrial forms of glycerol-3-P dehydrogenase are increased by DHEA treatment; (d) cytosol obtained from DHEA-treated rats synthesizes more glycerol-3-P during incubation with fructose-1,6-P2 (used as source of dihydroxyacetone phosphate) and NADP+; the addition of citratein vitro further increases this difference; (e) mitochondria prepared from DHEA-treated rats more rapidly consume glycerol-3-P added exogenously or formed endogenously in the cytosol in the presence of fructose-1,6-P2 and NADP+.  相似文献   

4.
Complex I binds several mitochondrial NAD-coupled dehydrogenases   总被引:5,自引:0,他引:5  
NADH:ubiquinone reductase (complex I) of the mitochondrial inner membrane respiratory chain binds a number of mitochondrial matrix NAD-linked dehydrogenases. These include pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, mitochondrial malate dehydrogenase, and beta-hydroxyacyl-CoA dehydrogenase. No binding was detected between complex I and cytosolic malate dehydrogenase, glutamate dehydrogenase, NAD-isocitrate dehydrogenase, lipoamide dehydrogenase, citrate synthase, or fumarase. The dehydrogenases that bound to complex I did not bind to a preparation of complex II and III, nor did they bind to liposomes. The binding of pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, and mitochondrial malate dehydrogenase to complex I is a saturable process. Based upon the amount of binding observed in these in vitro studies, there is enough inner membrane present in the mitochondria to bind the dehydrogenases in the matrix space. The possible metabolic significance of these interactions is discussed.  相似文献   

5.
The present study investigated the protective efficacy of dl-alpha-lipoic acid on the peroxidative damage and abnormal antioxidant levels in the mitochondrial fraction of testis in cyclophosphamide (CP) administered rats. Male Wistar rats of 140+/-20 g were categorized into four groups. Two groups were administered CP (15 mg/kg body weight once a week for 10 weeks by oral gavage) to induce testicular toxicity; one of these groups received lipoic acid treatment (35 mg/kg body weight intraperitoneally once a week for 10 weeks, 24 h prior to CP administration). A vehicle-treated control group and a lipoic acid drug control group were also included. The mitochondrial fraction of untreated CP-exposed testis showed 1.84-fold increase in lipid peroxidation, along with a significant (P<0.001) increase in hydrogen peroxide levels. In CP-exposed rats, we observed abnormal changes in the activities/levels of mitochondrial enzymic (superoxide dismutase, glutathione peroxidase and glutathione reductase) and non-enzymic (reduced glutathione, ascorbate and alpha-tocopherol) antioxidants. CP-treated rats also showed decline in the activities of mitochondrial enzymes such as succinate dehydrogenase, malate dehydrogenase and isocitrate dehydrogenase. In contrast, rats pretreated with lipoic acid showed normal lipid peroxidation and antioxidant defenses, thereby showing the protection rendered by lipoic acid.  相似文献   

6.
Enzymatic down regulation with exercise in rat skeletal muscle   总被引:13,自引:0,他引:13  
Maximal activities of rat skeletal muscle mitochondrial citrate synthase (CS), malate dehydrogenase (MDH), and alanine aminotransferase (ALT), as well as several other mitochondrial enzymes involved in various metabolic functions were significantly suppressed after a single bout of acute or exhaustive treadmill running. This enzymatic "down regulation" was maintained 24 and 48 h post exhaustion, especially in the untrained rats. Neither muscle cytosolic nor hepatic enzymes exhibited down regulation after exercise. Proteolysis was increased with exercise as assessed by the clearance of [3H]leucine previously incorporated into the proteins of the rats. Decreased CS, MDH, and ALT activities correlated with a significant loss of mitochondrial total protein sulfhydryl (r = 0.67, 0.68, 0.59, respectively, P less than 0.001) in untrained rats and both CS and MDH could be partially restored by incubation with dithiothreitol. Endurance-tested untrained and trained rats had significantly higher glutathione peroxidase (GPX) activity in both muscle mitochondria and cytosol which correlated significantly with endurance time (r = 0.70 and 0.74, respectively). It is concluded that enzymatic down regulation is not caused by proteolysis alone; i.e., peroxides and oxygen free radicals produced in prolonged exercise may alter the intramitochondrial redox state by oxidizing free thiols that may be required at active sites of these enzymes. Training may enhance the ability of the muscle to resist the toxic oxygen species by increasing GPX activity.  相似文献   

7.
Selenium (Se) deficiency for 5 weeks in rats produced changes in the activity of a number of hepatic, renal and plasma enzymes. In animals whose food intake was restricted to 75% of normal for 2 weeks, Se deficiency produced significant increases in the activity of hepatic cytosolic 'malic' enzyme and mitochondrial alpha-glycerophosphate dehydrogenase (GPD), two enzymes that are particular sensitive to the thyroid-hormone concentrations in tissue. Propylthiouracil-induced hypothyroidism produced significant decreases in 'malic' enzyme and GPD activities. The effect of hypothyroidism on the activity of 'malic' enzyme, GPD and other enzymes studied in liver and plasma was often opposite to that seen in Se deficiency. Glutathione S-transferase (GST) activity was increased by both Se deficiency and hypothyroidism, but in hypothyroid animals further significant increases in GST were produced by Se deficiency. These data suggest that the changes in enzyme expression observed in Se deficiency are not caused by decreased tissue exposure to thyroid hormones.  相似文献   

8.
P Padma  O H Setty 《Life sciences》1999,64(25):2411-2417
The effect of carbon tetrachloride administration on liver mitochondrial function and the protective effect of an aqueous extract of Phyllanthus fraternus were studied in rats. The following changes were observed in mitochondria due to the administration of carbon tetrachloride. 1) A decrease in the rate of respiration, respiratory control ratio and P/O ratio using glutamate and malate or succinate as substrates. 2) A decrease in the activities of NADH dehydrogenase (35%), succinate dehydrogenase (76%) and cytochrome c oxidase (51%). The rate of electron transfer through site I, site II and site III was studied independently and found to be significantly decreased. 3) A decrease in the content of cytochrome aa3 (34%). 4) A significant decrease in the levels of phospholipids particularly cardiolipin and a significant increase in the lipid peroxide level was observed. The carbon tetrachloride induced toxicity may be partly due to the lipid peroxidation and partly due to the effect on protein synthesis. Administration of rats with an aqueous extract of P. fraternus prior to carbon tetrachloride administration showed significant protection on the carbon tetrachloride induced mitochondrial dysfunction on all the parameters studied.  相似文献   

9.
Ethanol or acetaldehyde orally administered (15% and 2% respectively in drinking water) to male Wistar rats for three months induced alterations in the main liver enzymes responsible for ethanol metabolism, aspartate and alanine aminotransferases and NAD glutamate dehydrogenase. Ethanol produced a significant decrease in the activity of soluble alcohol dehydrogenase, while acetaldehyde induced alterations both in soluble and mitochondrial aldehyde dehydrogenases: soluble activity was significantly higher than in the control and ethanol-treated groups, and mitochondrial activity was significantly diminished. Both soluble aspartate and alanine aminotransferases showed pronounced increases by the chronic effect of acetaldehyde, while mitochondrial activities were practically unchanged by the effect of ethanol or acetaldehyde. Mitochondrial NAD glutamate dehydrogenase showed a rise in its activity both by the effect of chronic ethanol and acetaldehyde consumption. The level of metabolites assayed in liver extracts showed marked differences between ethanol and acetaldehyde treatment which indicates that ethanol produced a remarkable increase in glutamate, aspartate and free ammonia together with marked decrease in pyruvate and 2-oxoglutarate concentrations. Acetaldehyde consumption induced a significant decrease in 2-oxoglutarate and pyruvate concentrations. These observations suggest that ethanol has an important effect on the urea cycle enzymes, while the effect of acetaldehyde contributes to the impairment of the citric acid cycle.  相似文献   

10.
Oral administration of 7.0 mg/kg calcium carbimide (calcium cyanamide, CC) to the rat produced differential inhibition of hepatic aldehyde dehydrogenase (ALDH) isozymes, as indicated by the time-course profiles of enzyme activity. The low-Km mitochondrial ALDH was most susceptible to inhibition following CC administration, with complete inhibition occurring at 0.5 h and return to control activity at 96 h. The low-Km cytosolic and high-Km mitochondrial, cytosolic, and microsomal ALDH isozymes were inhibited to a lesser degree and (or) for a shorter duration compared with the mitochondrial low-Km enzyme. The time course of carbimide, the hydrolytic product of CC, was determined in plasma following oral administration of 7.0 mg/kg CC to the rat. The maximum plasma carbimide concentration (102 ng/mL) occurred at 1 h and the apparent elimination half-life in plasma was 1.5 h. Carbimide was not measurable in the liver during the 6.5 h time interval when carbimide was present in the plasma. There were negative, linear correlations between plasma carbimide concentration and hepatic low-Km mitochondrial, low-Km cytosolic, and high-Km microsomal ALDH activities. In vitro studies demonstrated that carbimide, at concentrations obtained in plasma following oral CC administration, produced only 19% inhibition of low-Km mitochondrial ALDH and no inhibition of low-Km cytosolic and high-Km microsomal ALDH isozymes. These data demonstrate that carbimide, itself, is not primarily responsible for hepatic ALDH inhibition in vivo following oral CC administration. It would appear that carbimide must undergo metabolic conversion in vivo to inhibit hepatic ALDH enzymes, which is supported by the observation of no measurable carbimide in the liver when ALDH was maximally inhibited following oral CC administration.  相似文献   

11.
Feeding the thermogenic steroid, 5-androsten-3 beta-ol-17-one (dehydroepiandrosterone, DHEA) in the diet of rats induced the synthesis of liver mitochondrial sn-glycerol 3-phosphate dehydrogenase to levels three to five times that of control rats within 7 days. The previously reported enhancement of liver cytosolic malic enzyme was confirmed. The induction of both enzymes was detectable at 0.01% DHEA in the diet, reached plateau stimulation at 0.1 to 0.2%, and was completely blocked by simultaneous treatment with actinomycin D. Feeding DHEA caused smaller, but statistically significant increases of liver cytosolic lactate, sn-glycerol 3-phosphate, and isocitrate (NADP(+)-linked) dehydrogenases but not of malate or glucose 6-phosphate dehydrogenases. The capability of DHEA to enhance mitochondrial glycerophosphate dehydrogenase and malic enzyme was influenced by the thyroid status of the rats; was smallest in thyroidectomized rats and highest in rats treated with triiodothyronine. 5-Androsten-3 beta,17 beta-diol and 5-androsten-3 beta-ol-7,17-dione were as effective as DHEA in enhancing the liver mitochondrial glycerophosphate dehydrogenase and malic enzyme. Administering compounds that induce the formation of cytochrome P450 enzymes enhanced liver malic enzyme activity but not that of mitochondrial glycerophosphate dehydrogenase. Arochlor 1254 and 3-methylcholanthrene also increased the response of malic enzyme to DHEA feeding.  相似文献   

12.
Abstract

NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose-6-phosphate dehydrogenase, malic enzyme, and NADP+-specific isocitrate dehydrogenases (ICDHs). Here, we investigated age-related changes in ICDH activity and protein expression in IMR-90 human diploid fibroblast cells and tissues from Fischer 344 rats. We found that in IMR-90 cells the activity of cytosolic ICDH (IDPc) gradually increased with age up to the 46–48 population doubling level (PDL) and then gradually decreased at later PDL. 2′,7′-Dichloro-fluorescein fluorescence which reflects intracellular ROS generation was increased with aging in IMR-90 cells. In ad libitum-fed rats, we noted age-related, tissue-specific modulations of IDPc and mitochondrial ICDH (IDPm) activities and protein expression in the liver, kidney and testes. In contrast, ICDH activities and protein expression were not significantly modulated in diet-restricted rats. These data suggest that modulation of ICDH is an age-dependent and a tissue-specific phenomenon.  相似文献   

13.
Previously we purified a cytosolic factor that stimulates the import of the extrapeptide (the synthetic peptide of the presequence of ornithine aminotransferase) into the mitochondrial matrix (Ono, H., and Tuboi, S., 1988, J. Biol. Chem. 263, 3188-3193). In this work this cytosolic factor was shown also to stimulate the import of the precursors of ornithine aminotransferase, a large subunit of succinate dehydrogenase, and sulfite oxidase. The amounts of these precursors bound to the outer mitochondrial membrane were increased by this cytosolic factor, suggesting that the cytosolic factor participates in the recognition step in the import process of the precursor protein. When the cytosolic factor was applied to an ATP-agarose column, the import-stimulating activity was recovered entirely in the unadsorbed fraction. Immunochemical studies showed that in these conditions the 70-kDa heat shock-related protein (Hsp 70) was present exclusively in the fraction adsorbed to the ATP-agarose column. The cytosolic factor is thus different from the 70-kDa heat shock-related protein, which was identified as a factor required for the import of mitochondrial proteins in yeast. The cytosolic factor was also detected in the cytosol of rat liver cells, and a considerable amount of this factor was recovered from rat liver mitochondria by washing them with high salt buffer, suggesting that the cytosolic factor has affinity to the outer mitochondrial membrane and binds to its receptor on the membrane. From these results, we conclude that the cytosolic factor forms a complex with the precursor of mitochondrial protein and then this complex binds to the outer mitochondrial membrane, probably via the receptor of the cytosolic factor.  相似文献   

14.
1. Cytosolic and mitochondrial ATP and ADP concentrations of liver cells isolated from normal fed, starved and diabetic rats were determined. 2. The cytosolic ATP/ADP ratio was 6,9 and 10 in normal fed, starved and diabetic rats respectively. 3. The mitochondrial ATP/ADP ratio was 2 in normal and diabetic rats and 1.6 in starved rats. 4. Adenosine increased the cytosolic and lowered the mitochondrial ATP/ADP ratio, whereas atractyloside had the opposite effect. 5. Incubation of the hepatocytes with fructose, glycerol or sorbitol led to a fall in the ATP/ADP ratio in both the cytosolic and the mitochondrial compartment. 6. The interrelationship between the mitochondrial ATP/ADP ratio and the phosphorylation state of pyruvate dehydrogenase in intact cells was studied. 7. In hepatocytes isolated from fed rats an inverse correlation between the mitochondrial ATP/ADP ratio and the active form of pyruvate dehydrogenase (pyruvate dehydrogenase a) was demonstrable on loading with fructose, glycerol or sorbitol. 8. No such correlation was obtained with pyruvate or dihydroxyacetone. For pyruvate, this can be explained by inhibition of pyruvate dehydrogenase kinase. 9. Liver cells isolated from fed animals displayed pyruvate dehydrogenase a activity twice that found in vivo. Physiological values were obtained when the hepatocytes were incubated with albumin-oleate, which also yielded the highest mitochondrial ATP/ADP ratio.  相似文献   

15.
Several lines of research suggest that mitochondria play a role in the etiopathogenesis of diabetic cardiomyopathy, although the mechanisms involved are still debated. In the present study, we report that State 3 oxygen consumption decreases by approximately 35% with glutamate and by approximately 30% with succinate in mitochondria from diabetic rat hearts compared to controls. In these mitochondria the enzymatic activities of complex I and complex II are also decreased to a comparable extent. Western blot analysis of mitochondrial protein pattern using antibodies recognizing proteins modified by the lipid peroxidation product 4-hydroxynonenal indicates the FAD-containing subunit of succinate dehydrogenase as one of the targets of this highly reactive aldehyde. In rats diabetic for 6 or 12 weeks, insulin supplementation for 2 weeks decreases the level of protein modified by 4-hydroxynonenal and restores mitochondrial respiration and enzyme activity to control level. Taken together, these results: (1) indicate that 4-hydroxynonenal is endogenously produced within diabetic mitochondria and forms an adduct with selective mitochondrial proteins, (2) identify one of these proteins as a subunit of succinate dehydrogenase, and (3) provide strong evidence that insulin treatment can reverse and ameliorate free radical damage and mitochondrial function under diabetic conditions.  相似文献   

16.
We evaluated the effect of sodium molybdate on carbohydrate metabolizing enzymes and mitochondrial enzymes in diabetic rats. Diabetic rats showed a significant reduction in the activities of glucose metabolising enzymes like hexokinase, glucose-6-phosphate dehydrogenase, glycogen synthase and in the level of glycogen. An elevation in the activities of aldolase, glucose-6-phosphatase, fructose 1,6- bisphosphatase, glycogen phosphorylase and in the level of blood glucose were also observed in diabetic rats when compared to control rats. The activities of mitochondrial enzymes isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, NADH-dehydrogenase and cytochrome-C-oxidase were also significantly lowered in diabetic rats. Molybdate administration to diabetic rats reversed the above changes in a significant manner. From our observations, we conclude that administration of sodium molybdate regulated the blood sugar levels in alloxan-induced diabetic rats. Sodium molybdate therapy not only maintained the blood glucose homeostasis but also altered the activities of carbohydrate metabolising enzymes. Molybdate therapy also considerably improved the activities of mitochondrial enzymes, thereby suggesting its role in mitochondrial energy production.  相似文献   

17.
In the Wobbler mouse, a mutation of the Vps54 protein increases oxidative stress in spinal motoneurons, associated to toxic levels of nitric oxide and hyperactivity of nitric oxide synthase (NOS). Progesterone neuroprotection has been reported for several CNS diseases, including the Wobbler mouse neurodegeneration. In the present study, we analyzed progesterone effects on mitochondrial-associated parameters of symptomatic Wobbler mice. The activities of mitochondrial respiratory chain complexes I, II-III and IV and protein levels of mitochondrial and cytosolic NOS were determined in cervical and lumbar cords from control, Wobbler and Wobbler mice receiving a progesterone implant for 18 days. We found a significant reduction of complex I and II-III activities in mitochondria and increased protein levels of mitochondrial, but not cytosolic nNOS, in the cervical cord of Wobbler mice. Progesterone treatment prevented the reduction of complex I in the cervical region and the increased level of mitochondrial nNOS. Wobbler motoneurons also showed accumulation of amyloid precursor protein immunoreactivity and decreased activity and immunostaining of MnSOD. Progesterone treatment avoided these abnormalities. Therefore, administration of progesterone to clinically afflicted Wobblers (i) prevented the abnormal increase of mitochondrial nNOS and normalized respiratory complex I; (ii) decreased amyloid precursor protein accumulation, a sign of axonal degeneration, and (iii) increased superoxide dismutation. Thus, progesterone neuroprotection decreases mitochondriopathy of Wobbler mouse cervical spinal cord.  相似文献   

18.
The yeast Saccharomyces cerevisiae contains three alcohol dehydrogenase isoenzymes (ADHI-ADHIII), two in the cytoplasm (ADHI and ADHII) and one in the mitochondrion (ADHIII). Sequence comparison of the corresponding nuclear genes showed that these three proteins are 80-90% identical except for a 27-amino acid extension at the amino terminus of ADHIII. Here we demonstrate that ADHIII is located inside the mitochondrial inner membrane. We also show, using gene fusions, that the amino terminus of ADHIII contains the information for targeting the protein to and transporting it into the mitochondrion. The mitochondrial isoenzyme ADHIII can be converted into a cytosolic protein by deleting its first 28 amino acids. Conversely, the cytoplasmic isoenzyme ADHII can be converted into a mitochondrial isoenzyme by replacing its first 21 amino acids with the first 48 amino acids of ADHIII. We conclude that ADHII is a cytosolic protein because it lacks an amino-terminal targeting sequence for the mitochondrion and that ADHIII is a mitochondrial protein because it contains a mitochondrial targeting sequence.  相似文献   

19.
The growth characteristics of the sourdough yeast Candida milleri was studied in a carbon-limited aerobic chemostat culture on defined medium. The effect of glucose, xylose, and glucose-xylose mixture on metabolite production and on key enzyme activities was evaluated. Xylose as a sole carbon source was not metabolized by C. milleri. Glucose as a sole carbon source produced only biomass and carbon dioxide. When a glucose-xylose mixture (125:125 C-mM) was used as a carbon source, a small amount of xylose was consumed and a low concentration of xylitol was produced (7.20 C-mM). Enzymatic assays indicated that C. milleri does not possess xylitol dehydrogenase activity and its xylose reductase is exclusively NADPH-dependent. In glucose medium both NAD(+)- and NADP(+)-dependent aldehyde dehydrogenase activities were found, whereas in a glucose-xylose medium only NADP(+)-dependent aldehyde dehydrogenase activity was detected. The developed metabolic flux analysis corresponded well with the experimentally measured values of metabolite production, oxygen consumption (OUR), and carbon dioxide production (CER). Turnover number in generation and consumption of ATP, mitochondrial and cytosolic NADH, and cytosolic NADPH could be calculated and redox balance was achieved. Constraints were imposed on the flux estimates such that the directionality of irreversible reactions is not violated, and cofactor dependence of the measured enzyme activities were taken into account in constructing the metabolic flux network.  相似文献   

20.
A 2-fold increase in hepatic alanine concentration was observed in rats bearing a Walker 256 carcinoma growing sub-cutaneously. Decreases were observed in the activities of both cytosolic and mitochondrial isozyme forms of L-alanine-2-oxoglutarate aminotransferase. Activities of two enzymes involved in a secondary pathway of haem synthesis involving alanine, L-alanine-4,5-dioxovalerate aminotransferase and the NADP-requiring isozyme form of 4-oxo-5-hydroxyvalerate dehydrogenase were also reduced but there was no change in liver porphyrin concentration. L-alanine-glyoxalate aminotransferase activity was unaffected. The results are discussed in relation to the utilisation of alanine as a gluconeogenic substrate in the tumor-bearing host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号