首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A new cluster validity index is proposed that determines the optimal partition and optimal number of clusters for fuzzy partitions obtained from the fuzzy c-means algorithm. The proposed validity index exploits an overlap measure and a separation measure between clusters. The overlap measure, which indicates the degree of overlap between fuzzy clusters, is obtained by computing an inter-cluster overlap. The separation measure, which indicates the isolation distance between fuzzy clusters, is obtained by computing a distance between fuzzy clusters. A good fuzzy partition is expected to have a low degree of overlap and a larger separation distance. Testing of the proposed index and nine previously formulated indexes on well-known data sets showed the superior effectiveness and reliability of the proposed index in comparison to other indexes.  相似文献   

2.
Cluster validity indices are used for estimating the quality of partitions produced by clustering algorithms and for determining the number of clusters in data. Cluster validation is difficult task, because for the same data set more partitions exists regarding the level of details that fit natural groupings of a given data set. Even though several cluster validity indices exist, they are inefficient when clusters widely differ in density or size. We propose a clustering validity index that addresses these issues. It is based on compactness and overlap measures. The overlap measure, which indicates the degree of overlap between fuzzy clusters, is obtained by calculating the overlap rate of all data objects that belong strongly enough to two or more clusters. The compactness measure, which indicates the degree of similarity of data objects in a cluster, is calculated from membership values of data objects that are strongly enough associated to one cluster. We propose ratio and summation type of index using the same compactness and overlap measures. The maximal value of index denotes the optimal fuzzy partition that is expected to have a high compactness and a low degree of overlap among clusters. Testing many well-known previously formulated and proposed indices on well-known data sets showed the superior reliability and effectiveness of the proposed index in comparison to other indices especially when evaluating partitions with clusters that widely differ in size or density.  相似文献   

3.
Cluster validity indices are used to validate results of clustering and to find a set of clusters that best fits natural partitions for given data set. Most of the previous validity indices have been considerably dependent on the number of data objects in clusters, on cluster centroids and on average values. They have a tendency to ignore small clusters and clusters with low density. Two cluster validity indices are proposed for efficient validation of partitions containing clusters that widely differ in sizes and densities. The first proposed index exploits a compactness measure and a separation measure, and the second index is based an overlap measure and a separation measure. The compactness and the overlap measures are calculated from few data objects of a cluster while the separation measure uses all data objects. The compactness measure is calculated only from data objects of a cluster that are far enough away from the cluster centroids, while the overlap measure is calculated from data objects that are enough near to one or more other clusters. A good partition is expected to have low degree of overlap and a larger separation distance and compactness. The maximum value of the ratio of compactness to separation and the minimum value of the ratio of overlap to separation indicate the optimal partition. Testing of both proposed indices on some artificial and three well-known real data sets showed the effectiveness and reliability of the proposed indices.  相似文献   

4.
基于模糊划分测度的聚类有效性指标   总被引:1,自引:0,他引:1       下载免费PDF全文
聚类有效性指标用于评价聚类结果的有效性。根据聚类的基本特性,提出了一个新的用于发现最优模糊划分的聚类有效性指标,该有效性指标采用模糊划分测度和信息熵两个重要因子来评价模糊聚类的有效性。其中,模糊划分测度用于评价聚类的类内紧致性与类间分离性,而信息熵则反映了模糊聚类划分结果的不确定性程度。实验结果表明,该聚类有效性指标能对模糊聚类结果的有效性进行正确的评价,特别是对于空间数据的聚类有效性评价,同其他有效性指标相比,它不仅能得到最优的模糊划分,而且对权重系数也是不敏感的。  相似文献   

5.
We propose an internal cluster validity index for a fuzzy c-means algorithm which combines a mathematical model for the fuzzy c-partition and a heuristic search for the number of clusters in the data. Our index resorts to information theoretic principles, and aims to assess the congruence between such a model and the data that have been observed. The optimal cluster solution represents a trade-off between discrepancy and the complexity of the underlying fuzzy c-partition. We begin by testing the effectiveness of the proposed index using two sets of synthetic data, one comprising a well-defined cluster structure and the other containing only noise. Then we use datasets arising from real life problems. Our results are compared to those provided by several available indices and their goodness is judged by an external measure of similarity. We find substantial evidence supporting our index as a credible alternative to the cluster validation problem, especially when it concerns structureless data.  相似文献   

6.
This paper proposed a novel approach to ranking fuzzy numbers based on the left and right deviation degree (L-R deviation degree). In the approach, the maximal and minimal reference sets are defined to measure L-R deviation degree of fuzzy number, and then the transfer coefficient is defined to measure the relative variation of L-R deviation degree of fuzzy number. Furthermore, the ranking index value is obtained based on the L-R deviation degree and relative variation of fuzzy numbers. Additionally, to compare the proposed approach with the existing approaches, five numerical examples are used. The comparative results illustrate that the approach proposed in this paper is simpler and better.  相似文献   

7.
In fuzzy clustering, the fuzzy c-means (FCM) clustering algorithm is the best known and used method. Since the FCM memberships do not always explain the degrees of belonging for the data well, Krishnapuram and Keller proposed a possibilistic approach to clustering to correct this weakness of FCM. However, the performance of Krishnapuram and Keller's approach depends heavily on the parameters. In this paper, we propose another possibilistic clustering algorithm (PCA) which is based on the FCM objective function, the partition coefficient (PC) and partition entropy (PE) validity indexes. The resulting membership becomes the exponential function, so that it is robust to noise and outliers. The parameters in PCA can be easily handled. Also, the PCA objective function can be considered as a potential function, or a mountain function, so that the prototypes of PCA can be correspondent to the peaks of the estimated function. To validate the clustering results obtained through a PCA, we generalized the validity indexes of FCM. This generalization makes each validity index workable in both fuzzy and possibilistic clustering models. By combining these generalized validity indexes, an unsupervised possibilistic clustering is proposed. Some numerical examples and real data implementation on the basis of the proposed PCA and generalized validity indexes show their effectiveness and accuracy.  相似文献   

8.
In this paper a fuzzy point symmetry based genetic clustering technique (Fuzzy-VGAPS) is proposed which can automatically determine the number of clusters present in a data set as well as a good fuzzy partitioning of the data. The clusters can be of any size, shape or convexity as long as they possess the property of symmetry. Here the membership values of points to different clusters are computed using the newly proposed point symmetry based distance. A variable number of cluster centers are encoded in the chromosomes. A new fuzzy symmetry based cluster validity index, FSym-index is first proposed here and thereafter it is utilized to measure the fitness of the chromosomes. The proposed index can detect non-convex, as well as convex-non-hyperspherical partitioning with variable number of clusters. It is mathematically justified via its relationship to a well-defined hard cluster validity function: the Dunn’s index, for which the condition of uniqueness has already been established. The results of the Fuzzy-VGAPS are compared with those obtained by seven other algorithms including both fuzzy and crisp methods on four artificial and four real-life data sets. Some real-life applications of Fuzzy-VGAPS to automatically cluster the gene expression data as well as segmenting the magnetic resonance brain image with multiple sclerosis lesions are also demonstrated.  相似文献   

9.
In this paper we present a new distance metric that incorporates the distance variation in a cluster to regularize the distance between a data point and the cluster centroid. It is then applied to the conventional fuzzy C-means (FCM) clustering in data space and the kernel fuzzy C-means (KFCM) clustering in a high-dimensional feature space. Experiments on two-dimensional artificial data sets, real data sets from public data libraries and color image segmentation have shown that the proposed FCM and KFCM with the new distance metric generally have better performance on non-spherically distributed data with uneven density for linear and nonlinear separation.  相似文献   

10.
In this article, a cluster validity index and its fuzzification is described, which can provide a measure of goodness of clustering on different partitions of a data set. The maximum value of this index, called the PBM-index, across the hierarchy provides the best partitioning. The index is defined as a product of three factors, maximization of which ensures the formation of a small number of compact clusters with large separation between at least two clusters. We have used both the k-means and the expectation maximization algorithms as underlying crisp clustering techniques. For fuzzy clustering, we have utilized the well-known fuzzy c-means algorithm. Results demonstrating the superiority of the PBM-index in appropriately determining the number of clusters, as compared to three other well-known measures, the Davies-Bouldin index, Dunn's index and the Xie-Beni index, are provided for several artificial and real-life data sets.  相似文献   

11.
聚类的错误主要表现为两种形式:将原属不同类的数据分到同一个聚类和将原属同一类的数据分到不同聚类。文中提出类内不一致性和类间重叠度两个指标分别度量聚类中出现这两类错误的程度。一个好的模糊分割中包含的聚类错误应尽可能少。同时,聚类紧致度应尽可能大。基于这两个错误度量指标和紧致性度量,提出一种有效性函数来判断模糊聚类的有效性。实验结果表明,提出的有效性函数能有效判断最佳聚类数并且有较好的鲁棒性。  相似文献   

12.
Categorical data clustering is a difficult and challenging task due to the special characteristic of categorical attributes: no natural order. Thus, this study aims to propose a two-stage method named partition-and-merge based fuzzy genetic clustering algorithm (PM-FGCA) for categorical data. The proposed PM-FGCA uses a fuzzy genetic clustering algorithm to partition the dataset into a maximum number of clusters in the first stage. Then, the merge stage is designed to select two clusters among the clusters that generated in the first stage based on its inter-cluster distances and merge two selected clusters to one cluster. This procedure is repeated until the number of clusters equals to the predetermined number of clusters. Thereafter, some particular instances in each cluster are considered to be re-assigned to other clusters based on the intra-cluster distances. The proposed PM-FGCA is implemented on ten categorical datasets from UCI machine learning repository. In order to evaluate the clustering performance, the proposed PM-FGCA is compared with some existing methods such as k-modes algorithm, fuzzy k-modes algorithm, genetic fuzzy k-modes algorithm, and non-dominated sorting genetic algorithm using fuzzy membership chromosomes. Adjusted Ranked Index (ARI), Normalized Mutual Information (NMI), and Davies–Bouldin (DB) index are selected as three clustering validation indices which are represented to both external index (i.e., ARI and NMI) and internal index (i.e., DB). Consequently, the experimental result shows that the proposed PM-FGCA outperforms the benchmark methods in terms of the tested indices.  相似文献   

13.
Quality of clustering is an important issue in application of clustering techniques. Most traditional cluster validity indices are geometry-based cluster quality measures. This paper proposes a cluster validity index based on the decision-theoretic rough set model by considering various loss functions. Experiments with synthetic, standard, and real-world retail data show the usefulness of the proposed validity index for the evaluation of rough and crisp clustering. The measure is shown to help determine optimal number of clusters, as well as an important parameter called threshold in rough clustering. The experiments with a promotional campaign for the retail data illustrate the ability of the proposed measure to incorporate financial considerations in evaluating quality of a clustering scheme. This ability to deal with monetary values distinguishes the proposed decision-theoretic measure from other distance-based measures. The proposed validity index can also be extended for evaluating other clustering algorithms such as fuzzy clustering.  相似文献   

14.
一类基于数据的解释性模糊建模方法的研究   总被引:9,自引:0,他引:9  
An approach to identify interpretable fuzzy models from data is proposed. Interpretability, which is one of the most important features of fuzzy models, is analyzed first. The number of fuzzy rules is determined by fuzzy cluster validity indices. A modified fuzzy clustering algorithm,combined with the least square method, is used to identify the initial fuzzy model. An orthogonal least square algorithm and a method of merging similar fuzzy sets are then used to remove the redundancy of the fuzzy model and improve its interpretability. Next, in order to attain high accuracy, while preserving interpretability, a constrained Levenberg-Marquardt method is utilized to optimize the precision of the fuzzy model. Finally, the proposed approach is applied to a PH neutralization process, and the results show its validity.  相似文献   

15.
This article presents a multi-objective genetic algorithm which considers the problem of data clustering. A given dataset is automatically assigned into a number of groups in appropriate fuzzy partitions through the fuzzy c-means method. This work has tried to exploit the advantage of fuzzy properties which provide capability to handle overlapping clusters. However, most fuzzy methods are based on compactness and/or separation measures which use only centroid information. The calculation from centroid information only may not be sufficient to differentiate the geometric structures of clusters. The overlap-separation measure using an aggregation operation of fuzzy membership degrees is better equipped to handle this drawback. For another key consideration, we need a mechanism to identify appropriate fuzzy clusters without prior knowledge on the number of clusters. From this requirement, an optimization with single criterion may not be feasible for different cluster shapes. A multi-objective genetic algorithm is therefore appropriate to search for fuzzy partitions in this situation. Apart from the overlap-separation measure, the well-known fuzzy Jm index is also optimized through genetic operations. The algorithm simultaneously optimizes the two criteria to search for optimal clustering solutions. A string of real-coded values is encoded to represent cluster centers. A number of strings with different lengths varied over a range correspond to variable numbers of clusters. These real-coded values are optimized and the Pareto solutions corresponding to a tradeoff between the two objectives are finally produced. As shown in the experiments, the approach provides promising solutions in well-separated, hyperspherical and overlapping clusters from synthetic and real-life data sets. This is demonstrated by the comparison with existing single-objective and multi-objective clustering techniques.  相似文献   

16.
In this research, a data clustering algorithm named as non-dominated sorting genetic algorithm-fuzzy membership chromosome (NSGA-FMC) based on K-modes method which combines fuzzy genetic algorithm and multi-objective optimization was proposed to improve the clustering quality on categorical data. The proposed method uses fuzzy membership value as chromosome. In addition, due to this innovative chromosome setting, a more efficient solution selection technique which selects a solution from non-dominated Pareto front based on the largest fuzzy membership is integrated in the proposed algorithm. The multiple objective functions: fuzzy compactness within a cluster (π) and separation among clusters (sep) are used to optimize the clustering quality. A series of experiments by using three UCI categorical datasets were conducted to compare the clustering results of the proposed NSGA-FMC with two existing methods: genetic algorithm fuzzy K-modes (GA-FKM) and multi-objective genetic algorithm-based fuzzy clustering of categorical attributes (MOGA (π, sep)). Adjusted Rand index (ARI), π, sep, and computation time were used as performance indexes for comparison. The experimental result showed that the proposed method can obtain better clustering quality in terms of ARI, π, and sep simultaneously with shorter computation time.  相似文献   

17.
In this paper, we propose a context-sensitive technique for unsupervised change detection in multitemporal remote sensing images. The technique is based on fuzzy clustering approach and takes care of spatial correlation between neighboring pixels of the difference image produced by comparing two images acquired on the same geographical area at different times. Since the ranges of pixel values of the difference image belonging to the two clusters (changed and unchanged) generally have overlap, fuzzy clustering techniques seem to be an appropriate and realistic choice to identify them (as we already know from pattern recognition literatures that fuzzy set can handle this type of situation very well). Two fuzzy clustering algorithms, namely fuzzy c-means (FCM) and Gustafson-Kessel clustering (GKC) algorithms have been used for this task in the proposed work. For clustering purpose various image features are extracted using the neighborhood information of pixels. Hybridization of FCM and GKC with two other optimization techniques, genetic algorithm (GA) and simulated annealing (SA), is made to further enhance the performance. To show the effectiveness of the proposed technique, experiments are conducted on two multispectral and multitemporal remote sensing images. A fuzzy cluster validity index (Xie-Beni) is used to quantitatively evaluate the performance. Results are compared with those of existing Markov random field (MRF) and neural network based algorithms and found to be superior. The proposed technique is less time consuming and unlike MRF does not require any a priori knowledge of distributions of changed and unchanged pixels.  相似文献   

18.
针对直觉模糊集合数据的聚类有效性问题,提出了一种基于直觉模糊包含度的聚类有效性分析方法。该方法采用直觉模糊包含度和直觉模糊划分熵来评价直觉模糊聚类的有效性。其中,直觉模糊包含度通过增加非隶属度参数对模糊包含度进行直觉化扩展,用于评价类与类间包含的程度;而直觉模糊划分熵用于检验分类结果的可靠性。最后通过典型实例验证了该方法的有效性。  相似文献   

19.
Many validity indices have been proposed for quantitatively assessing the performance of clustering algorithms. One limitation of existing indices is their lack of generalizability, due to their dependence on the specific algorithms and structures of the data space. To handle large-scale datasets with arbitrary structures, this research study proposes a new cluster separation measure for improving the effectiveness of existing validity indices. This is achieved by partitioning the original data space into a grid-based structure which allows the introduction of a new measurement for assessing the true data distribution between any two clusters instead of the distance between the two cluster prototypes. To validate the effectiveness of the proposed separation measure, we adopt two commonly used validity indices, the Davies-Bouldin’s function (DB) and Tibshirani’s Gap statistic (GS). These indices are denoted as R-DB-1 and R-GS-1 for clusters with sphere-shaped structures and R-DB-2 and R-GS-2 for irregular-shaped structures. This integration enables the indices to evaluate both partitional algorithms and hierarchical algorithms. Partitional algorithms including C-Means (CM), Fuzzy C-Means (FCM), and hierarchical algorithms, including DBSCAN and CLIQUE, are used to test the performance of the new indices. Two synthetic datasets with spherical structures and four synthetic datasets with irregular shapes are first compared. Five real datasets from the UCI machine learning repository are then used to further test the measure’s performance. The experimental results provide evidence that the new indices outperform the original indices.  相似文献   

20.
Fuzzy utility mining has been an emerging research issue because of its simplicity and comprehensibility. Different from traditional fuzzy data mining, fuzzy utility mining considers not only quantities of items in transactions but also their profits for deriving high fuzzy utility itemsets. In this paper, we introduce a new fuzzy utility measure with the fuzzy minimum operator to evaluate the fuzzy utilities of itemsets. Besides, an effective fuzzy utility upper-bound model based on the proposed measure is designed to provide the downward-closure property in fuzzy sets, thus reducing the search space of finding high fuzzy utility itemsets. A two-phase fuzzy utility mining algorithm, named TPFU, is also proposed and described for solving the problem of fuzzy utility mining. At last, the experimental results on both synthetic and real datasets show that the proposed algorithm has good performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号