首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
采用同相法制备正极材料LiNi1/3Co1/3Mn1/3O2,用X射线衍射仪(XRD)、扫描电子显微镜(SEM)/透射电镜(TEM)分析材料的结构和形貌特征,用LAND电池测试系统测试材料的电化学性能(充放电容量和循环性能等).以LiOH·H2O,H2C2O4·2H2O,Ni(AC)2·4H2O,Co(AC)2·4H2O和Mn(AC)2·4H2O为原料,采用固相法在不同煅烧温度和煅烧时间下制备的层状正极材料LiNi1/3Co1/3Mn1/3O2具有典型的α-NaFeO2型层状结构特征,晶型结构完整.电化学性能测试结果表明,在850℃下保温15 h合成的正极材料电化学性能最优,在电流密度为120 mA/g、充放电电压在2.75~4.5 V时,经30次循环后放电比容量为163.5 mA·h/g,容量保持率为94%;50次循环后为157.2 mA·h/g,容量保持率为90.8%.  相似文献   

2.
以油酸钠兼做钠源与碳源,分别采用球磨法、溶胶-凝胶法、水热法和水热辅助的溶胶-凝胶法制备前驱体,再经高温固相反应制备Na_3V_2(PO_4)_3/C/C复合正极材料。研究表明,前驱体制备方法对材料结晶性、形貌、颗粒尺寸和电化学性能具有显著影响。以球磨法制备前驱体得到的Na_3V_2(PO_4)_3/C/C具有最好的电化学活性,在10 C倍率下放电比容量达到-99 mA h·g1,循环200次容量保持率达到88%。  相似文献   

3.
《应用化工》2017,(4):681-684
采用沉淀法对层状LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料进行Y_2O_3表面包覆,采用X射线衍射(XRD)、扫描电子显微镜(SEM)、电化学交流阻抗(EIS)及恒流充放电对所制备材料的结构、形貌及电化学性能进行表征。结果表明,Y_2O_3均匀包覆在LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2材料的表面,并没有改变材料的晶体结构,且Y_2O_3包覆的正极材料表现出良好的电化学性能。在2.5~4.5 V电压范围和20 mA/g电流密度下,包覆0.5%Y_2O_3材料的首次放电容量190.5 mAh/g,50次循环后,材料的容量保持率达到99.9%,而未包覆材料的首次放电容量略低(187.0 mAh/g),且容量衰减较快,50次循环后,材料的容量保持率仅有92.7%。此外,包覆0.5%Y_2O_3的材料在400 mA/g下放电容量仍有150 mAh/g,表现出优异的倍率性能。  相似文献   

4.
《应用化工》2022,(4):681-684
采用沉淀法对层状LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料进行Y_2O_3表面包覆,采用X射线衍射(XRD)、扫描电子显微镜(SEM)、电化学交流阻抗(EIS)及恒流充放电对所制备材料的结构、形貌及电化学性能进行表征。结果表明,Y_2O_3均匀包覆在LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2材料的表面,并没有改变材料的晶体结构,且Y_2O_3包覆的正极材料表现出良好的电化学性能。在2.54.5 V电压范围和20 mA/g电流密度下,包覆0.5%Y_2O_3材料的首次放电容量190.5 mAh/g,50次循环后,材料的容量保持率达到99.9%,而未包覆材料的首次放电容量略低(187.0 mAh/g),且容量衰减较快,50次循环后,材料的容量保持率仅有92.7%。此外,包覆0.5%Y_2O_3的材料在400 mA/g下放电容量仍有150 mAh/g,表现出优异的倍率性能。  相似文献   

5.
以CH3COOLi、FeC2O4、纳米SiO2为原料,葡萄糖为碳源,超导碳为微波耦合剂,采用微波加热法合成了Li2FeSiO4/C材料。考察了不同微波时间对材料室温下电化学性能的影响,并通过X射线衍射、扫描电子显微镜、透射电子显微镜和X射线能谱对样品的晶型结构、表面形貌和组成进行表征分析。结果表明,微波合成法可以快速制备Li2FeSiO4/C材料,微波时间16min所得样品具有最好的电化学性能。室温下以C/16倍率进行充放电测试,放电容量为111.5mA·h/g;以0.2C进行充放电循环,首次放电容量为96.7mA·h/g,19次循环后容量仍有95.2mA·h/g。  相似文献   

6.
掺杂与表面包覆对尖晶石型LiMn2O4电化学性能的影响   总被引:1,自引:0,他引:1  
胡拥军  李义兵  吴四贵 《化工进展》2007,26(4):563-566,576
用固相法制备了Cr3 和F-同时掺杂的尖晶石型LiMn2O4正极材料,并对掺杂材料进行氧化铝表面包覆改性,用扫描电子显微镜和X射线衍射研究了材料的表面形貌和晶体结构,用充放电实验和交流阻抗技术测试了材料的电化学性能。结果表明:LiMn2O4在掺杂Cr3 和F-及表面包覆氧化铝后仍为尖晶石型结构,随掺杂和包覆量的增加,材料首次放电容量降低,但循环性能明显改善,其中未掺杂、掺杂量为0.10和表面包覆0.3%的氧化铝的材料室温首次放电容量分别为125.3 mA·h/g、117.5 mA·h/g和113.7 mA·h/g,循环25次后容量保持率分别为82.7%、91.5%和93.6%,而55℃下25次循环后放电容量及其保持率以表面包覆氧化铝的最佳,分别达到104.2 mA·h/g和92.1%。  相似文献   

7.
张卫新  翁韶迎  张俊  杨则恒  王强 《硅酸盐学报》2012,40(10):1495-1501
自制直径为90nm、长为500nm的β-FeOOH纳米棒为前驱物,通过碳热还原法和热分解法分别制备出形貌均匀、粒径为300nm的LiFePO4/C正极材料和粒径为100nm的Fe2O3负极材料,并研究它们对金属锂组成半电池和构造LiFePO4/C vs.Fe2O3全电池的电化学性能。结果表明:LiFePO4/C半电池在0.1C、0.5C、1.0C、5.0C、10.0C和15.0C(1C=170 mA g–1)倍率下放电比容量分别为158.8、153.2、144.3、126.8、111.0 mA h g–1和92.9mA h g–1。经过不同倍率循环后,返回0.1 C放电比容量为157.5mA h g–1,为初始0.1 C放电比容量的99.2%。Fe2O3半电池在50mA g–1电流密度下首次放电比容量为1655.5mA h g–1,循环50次后,仍保持460mA h g–1的放电比容量。LiFePO4/C vs.Fe2O3全电池在0.1 C倍率下,相对于LiFePO4活性物质,首次放电比容量为148.7mA h g–1;相对于Fe2O3活性物质,首次放电比容量为441.7mA h g–1。由LiFePO4/C纳米粒子作为正极材料、Fe2O3纳米粒子作为负极材料组成的全电池在0.1 C到2.0 C不同倍率下均表现出了良好的循环性能,且返回0.1 C后其放电比容量相对于初始0.1 C放电比容量无衰减。可见,以β-FeOOH纳米棒为前驱物控制制备的LiFePO4/C正极纳米材料和Fe2O3负极纳米材料可以有效地提升电池的性能。  相似文献   

8.
李玲芳  范长岭  文政  曾斌 《化工进展》2019,38(3):1482-1486
从控制Li3V2(PO4)/C的形貌入手,旨在提高其作为锂离子电池正极材料的电化学性能。以葡萄糖为碳源,CTAB为表面活性剂,利用喷雾干燥法制备了粒径约为1μm的正球形Li3V2(PO4)/C活性材料,颗粒尺寸均匀,振实密度较高。葡萄糖热解碳所形成的包覆层有效提高了材料的导电性,对材料的形貌控制则改善了锂离子扩散能力,因此本文所合成的Li3V2(PO4)/C具良好的电化学性能,材料的锂离子扩散系数相对纯相提升约2个数量级,低于1C倍率下放电比容量均大于115mA?h/g,10C和15C大倍率下放电比容量为85mA?h/g和75mA?h/g左右,5C下循环50次,其库仑效率为96.2%。充放电平台的电位平稳,电位差较小,电化学反应阻抗值小,说明极化现象得到了有效控制。  相似文献   

9.
采用尿素均相沉淀法制备了La掺杂Al代α-Ni(OH)2粉体材料,表征了其微观结构和形貌,并测试了样品作为MH-Ni电池正极活性材料的电化学性能.结果表明,制备的样品颗粒呈类球形,与Al代α-Ni(OH)2相比,结晶度增强,具有更大的晶格层间距,电极反应具有更好的可逆性和较小的电化学阻抗,在0.1C下放电比容量达403.04mA·h/g,放电中值电压较高并稳定于1.29V,1C下放电比容量达343.47mA·h/g,充放电循环50次容量保持率为90.31%,显示了良好的较大倍率放电性能.  相似文献   

10.
通过固相法制备出钛酸锂(LTO)样品,再将LTO和氧化石墨烯通过水热法制得钛酸锂/还原石墨烯复合材料(LTO-RGO)。通过XRD、SEM、TEM对材料的结构、形貌进行表征,并进行充放电性能测试、交流阻抗测试来检测其电化学性能。结果表明,石墨烯对钛酸锂进行包覆处理不影响钛酸锂材料的晶型结构、无杂相出现。钛酸锂/石墨烯复合材料表现出了比钛酸锂材料更为优异的电化学性能,0.2C倍率下的放电比容量为208.7mA·h/g,50次循环后容量保持率为98.10%;20C倍率下的放电比容量为136.1mA·h/g。  相似文献   

11.
以(NH4)2FeSO4、LiOH、Ti(SO4)2以及H3PO4为原料一步水热合成法制备不同温度下掺Ti4+-LiFePO4,然后进行碳包覆。XRD和SEM表明,制备的样品为单一相的准球形纳米粉体;激光粒度分析表明,在160℃下合成的粉体平均粒径最小,约为140 nm;恒电流充放电及电化学阻抗谱测试材料电化学性能表明,在160℃下合成的掺Ti4+-LiFePO4/C材料充放电性能最好,0.1 C倍率下首次放电容量为160.97 mA·h/g,0.5 C倍率下经过50次放电,容量保留率为95.28%,通过电化学阻抗计算出锂离子扩散系数为1.78×10-12cm2/s。  相似文献   

12.
以醋酸锂、磷酸、七水合硫酸亚铁为原料,聚乙二醇为分散剂,通过一步水热法制备得到中空八面体LiFePO_4锂离子电池正极材料。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学性能测试仪对样品晶型、形电化学性能进行了表征测试。研究结果表明,在2.5~4.2 V电压范围内,以0.1 C(17 mA/g)倍率进行充放电,样品首次放电比容量为129.6 mA·h/g;0.2、0.5、1、2和5 C的充放电倍率时,首次放电比容量分别达到123.6、119.7、114.1、99.5g和90.6 mA·h/g。10 C的充放电倍率时首次放电比容量为84.3 mA·h/g,说明中空八面体LiFePO_4在高倍率下表现出优异的电化学性能。  相似文献   

13.
为改善镍锰酸锂的电化学性能,以硝酸铟(In(NO3)3·H2O)为原料,通过高温固相法在镍锰酸锂电极材料表面包覆一层惰性氧化铟(In2O3),并研究不同In2O3包覆量对镍锰酸锂复合材料的电化学性能的影响。XRD测试结果显示,包覆氧化铟并不会改变正极材料LiNi0.5Mn1.5O4自身结构。当包覆量为7%时,在0.1 mA的测试电流下首次放电比容量为134.21 mAh/g,明显高于未涂覆材料(115.65 mAh/g),100次循环后容量为128.4 mAh/g,容量保持率为95.67%;在0.5 mA的测试电流条件下,首次放电比容量为78.13 mAh/g, 100次循环后比容量为56.25 mAh/g,容量保持率为64.44%。In2O3包覆起到保护材料和促进离子传导的作用,可有效提高正极材料的电化学性能。  相似文献   

14.
钛基材料中最具代表性的H_2Ti_(12)O_(25)负极材料因其循环性能好,能量密度高引起了人们的广泛关注,采用聚苯胺原位包覆的方法进一步提高材料的电化学性能。结果表明,导电聚苯胺包覆后的材料比未包覆材料H_2Ti_(12)O_(25)具有更高的容量和更好的倍率性能。当包覆量为2%时,样品循环100周后的放电比容量为145.9mA·h·g~(-1),容量保持率为94.2%,而未包覆样品为109 mA·h·g~(-1),容量保持率为92.3%。  相似文献   

15.
采用尿素均相沉淀法制备了La掺杂Al代a-Ni(OH)2粉体材料,表征了其微观结构和形貌,并测试了样品作为MH-Ni电池正极活性材料的电化学性能. 结果表明,制备的样品颗粒呈类球形,与Al代a-Ni(OH)2相比,结晶度增强,具有更大的晶格层间距,电极反应具有更好的可逆性和较小的电化学阻抗,在0.1 C下放电比容量达403.04 mA×h/g,放电中值电压较高并稳定于1.29 V,1 C下放电比容量达343.47 mA×h/g,充放电循环50次容量保持率为90.31%,显示了良好的较大倍率放电性能.  相似文献   

16.
采用液相共沉淀-固相焙烧合成了橄榄石型磷酸亚铁锂(LiFePO4)正极材料,用X射线衍射(XRD)、扫描电镜(SEM)和恒流充放电测试等方法对产物物相结构、表观形貌和电化学性能进行了表征和分析.纯相材料首次放电比容量达到90.6 mA·h/g,循环5次后,放电比容量为75.94 mA·h/g.为解决首次放电比容量低下以及材料循环性能差的问题,采取不同碳源掺杂对材料进行改进,最后得到LiFePO4/C复合正极材料,0.05 C首次放电比容量达到158.8 mA·h/g.  相似文献   

17.
以Zr(NO_3)_4·5H_2O和CH_3COOLi·2H2_O为原料,采用湿化学法,将Li_2ZrO_3包覆在LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2锂离子电池正极材料的表面,研究Li_2ZrO_3不同包覆比例对LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2电化学性能的影响。SEM、TEM、EDS谱图分析表明,Li_2ZrO_3层均匀地包覆在LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2表面,其厚度约为8 nm。与纯相相比,1%(质量分数)Li_2ZrO_3包覆的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2复合材料在1.0 C下首次放电比容量为184.7 mA·h·g~(-1)、100次循环之后放电比容量为169.5 mA·h·g~(-1),其容量保持率达到91.77%,表现出良好的循环稳定性。循环伏安(CV)和电化学阻抗(EIS)测试结果表明,Li_2ZrO_3包覆层抑制了正极材料与电解液之间的副反应,减小了材料在循环过程中的电荷转移阻抗,从而提高了材料的电化学性能。  相似文献   

18.
采用湿化学法,对高镍正极材料LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2进行不同比例的Co_3O_4表面包覆改性研究。利用XRD、SEM、TEM等测试手段对包覆前后样品的晶体结构和表面形貌进行了表征,并对各样品的电化学性能进行了测试。其中0.5%(wt)Co_3O_4包覆的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2样品表现出最佳的首次充放电性能、循环性能和高温稳定性能。在55℃下循环180圈后,仍具有142.9 mA·h·g~(-1)的放电比容量,容量保持率为63.7%。同时借助电化学阻抗(EIS)测试对改性的原因进行了分析。  相似文献   

19.
采用溶剂热法制备LiMn_(0.8)Fe_(0.2)PO_4正极材料,研究了矿化剂KOH及阳离子表面活性剂双十二烷基二甲基溴化铵(DDAB)对产物形貌以及性能的影响。利用恒流充放电、循环伏安和交流阻抗对其电化学性能进行测试。结果表明:矿化剂KOH和表面活性剂DDAB均有利于减小颗粒粒径,从而使材料电化学性能得到提高。其中加入矿化剂KOH效果明显,所得LiMn_(0.8)Fe_(0.2)PO_4材料粒径最小,分散性能最好,有效碳包覆率最高,0.2C倍率下100次循环后容量保持率为94.3%;0.1C倍率下的放电比容量为157.4mA·h/g,5C下仍可以达到99.2mA·h/g,相比于基础材料LiMn_(0.8)Fe_(0.2)PO_4的152.3和82.3mA·h/g分别提高了3.3%和20.5%,具有很好的倍率性能和循环稳定性能。  相似文献   

20.
通过浸渍法在正极材料LiNi1/3Co1/3Mn1/3O2的表面包覆MgF2,通过XRD、SEM、交流阻抗(EIS)分析、充放电测试研究了不同量MgF2包覆对LiNi1/3Co1/3Mn1/3O2正极材料的结构与电化学性能的影响。结果表明,MgF2以非晶态形式包覆于LiNi1/3Co1/3Mn1/3O2材料颗粒的表面,当包覆量为3%(物质的量分数,下同)时,三元正极材料具有优良的电化学性能,在3.0~4.6 V充放电范围内0.1C充放电倍率下,首次放电比容量为196.3 mA·h/g,1C循环50次后容量保持率为95.7%,55 ℃高温下1C循环50次后容量保持率为93.3%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号