首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
This paper covers the absolute spectral power responsivity calibration of spectralon-coated Integrating Sphere Radiometer (ISR) equipped with 3 mm diameter InGaAs photodiode to be used as a transfer standard in fiber optic power measurements against Electrical Substitution Cryogenic Radiometer (ESCR) in Optics Laboratory of National Metrology Institute (TUBITAK UME) of Turkey. The initial uncertainty arising from the use of the Electrically Calibrated Pyroelectric Radiometer (ECPR) as a transfer standard in radiometric scale is 0.5% (k=2), which particularly comes from irregularity in the surface homogeneity of ECPR. In order to eliminate the ECPR step as well as its initial uncertainty contribution in fiber optic power measurements, the calibration application herein was carried out. Moreover power stabilization measurements of DFB laser sources at both 1309.1 nm and 1549.0 nm, the beam size determinations, and spectral analyses of these laser sources as well as spatial and angular dependence of spectral responsivities of the ISR were presented in this paper. The total expanded uncertainties were calculated as 0.283% and 0.315% in the determination of absolute spectral power responsivities of the ISR for 1309.1 nm and 1549.0 nm wavelengths respectively (k=2).  相似文献   

2.
基于低温辐射计的InGaAs陷阱探测器高精度光辐射定标研究   总被引:2,自引:0,他引:2  
介绍了以InGaAs陷阱探测器作为传递探测器,基于低温辐射计的高精度光辐射定标和标准传递实验与研究。在红外(944-1589nm)三个波长初步给出了InGaAs陷阱探测器绝对光谱响应率定标结果。InGaAs陷阱探测器绝对光谱响应率的联合不确定最大为0.655%,最小为0.026%。  相似文献   

3.
In this paper, the author reported two methods to extract spectral or spatial information inherited in the Raman chemical images for linear quantification calibration of crystallinity. The two approaches reported quantification results according to the spectral mean score of overall pixels or the spatial percentage of the pixels with a score greater than and equal to the threshold of the chemical images, respectively. From this study, it can be concluded that, first, sampling method for data collection in mapping has to be optimized to achieve linear quantification calibration through simple univariate analysis approaches. Second, the ordinary way of evaluating/validating a linear quantification technique by best linear correlation coefficient (R2) and root‐mean‐square error of calibration is disputable and has to be reconsidered. Lastly, with further consideration of root‐mean‐square relative error of calibration and predicted crystallinity at subpercent, it was found that the spectral mean score method cannot generate reliable quantification results at subpercent crystallinity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号