首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
    
We study the electron transport through a special quantum-dot(QD)structure composed of three QDs and two Majorana bound states(MBSs)using the nonequilibrium Green’s function technique.This QD-MBS ring structure includes two channels with the two coupled MBSs being Channel 1 and one QD being Channel 2,and three types of transport processes such as the electron transmission(ET),the Andreev reflection(AR),and the crossed Andreev reflection(CAR).By comparing the ET,AR,and CAR processes through Channels 1 and 2,we make a systematic study on the transport properties of the QD-MBS ring.It is shown that there appear two kinds of characteristic transport patterns for Channels 1 and 2,as well as the interplay between the two patterns.Of particular interest is that there exists an AR-assisted ET process in Channel 2,which is different from that in Channel 1.Thus a clear\"X\"pattern due to the ET and AR processes appears in the ET,AR,and CAR transmission coefficients.Moreover,we study how Channel 2 affects the three transport processes when Channel 1 is tuned in the ET and CAR regimes.It is shown that the transport properties of the ET,AR and CAR processes can be adjusted by tuning the energy level of the QD embedded in Channel 2.We believe this research should be a helpful reference for understanding the transport properties in the QD-MBS coupled systems.  相似文献   

2.
《Physics letters. A》2014,378(30-31):2256-2262
Nonequilibrium electronic transports through a double-QD-Majorana coupling system are studied with a purpose to extract the information to identify Majorana bound states (MBSs). It is found that MBSs can help form various transport processes, including the nonlocal crossed Andreev reflection, local resonant Andreev reflection, and cotunneling, depending on the relative position of two dot levels. These processes enrich the signature of average currents and noise correlations to probe the nature of MBSs. We further demonstrate the switching between the current peaks of crossed Andreev reflection and cotunneling, which is closely related to the nonlocal nature of Majorana fermions. We also propose effective physical pictures to understand these Majorana-assisted transports.  相似文献   

3.
We present a new device which consists of a molecular quantum dot (MQD) attached to a normal-metal, two ferromagnetic (FM), and a superconducting leads. The spin-related Andreev reflection (AR) current and the spin-dependent single-particle tunneling current through the normal-metal terminal are obtained, and it is found that the spin current exhibits the transistor-like behavior. The joint effects of the coherent spin flip and the angle between magnetic moments of the two FM leads on the spin current are also studied, these results provide the possibility to manipulate the spin current with the system parameters.  相似文献   

4.
Iron-based superconductors have been the subject of intensive study due to their high transition temperature and intriguing physical mechanisms. We describe a unique experimental approach to fabricate nano-scale normal metal/superconductor/normal metal junctions involving microcrystals of Fe1 ?+?y Te1 ???x Se x , for which we have observed a distinct phenomenon of negative differential conductance (NDC) dips along with multiple plateau features in differential conductance spectra. The evolution of the NDC dips and the plateau features is further explored as a function of both temperature and magnetic field, and their physical origin is discussed.  相似文献   

5.
         下载免费PDF全文
王素新  李玉现  刘建军 《中国物理 B》2016,25(3):37304-037304
Andreev reflection(AR) in a normal-metal/quantum-dot/superconductor(N–QD–S) system with coupled Majorana bound states(MBSs) is investigated theoretically. We find that in the N–QD–S system, the AR can be enhanced when coupling to the MBSs is incorporated. Fano line-shapes can be observed in the AR conductance spectrum when there is an appropriate QD–MBS coupling or MBS–MBS coupling. The AR conductance is always e~2/2h at the zero Fermi energy point when only QD–MBSs coupling is considered. In addition, the resonant AR occurs when the MBS–MBS coupling roughly equals to the QD energy level. We also find that an AR antiresonance appears when the QD energy level approximately equals to the sum of the QD–MBS coupling and the MBS–MBS coupling. These features may serve as characteristic signatures for the probe of MBSs.  相似文献   

6.
Electron transport properties of a triple-terminal Aharonov-Bohm interferometer are theoretically studied. By applying a Rashba spin-orbit coupling to a quantum dot locally, we find that remarkable spin polarization comes about in the electron transport process with tuning the structure parameters, i.e., the magnetic flux or quantum dot levels. When the quantum dot levels are aligned with the Fermi level, there only appear spin polarization in this structure by the presence of an appropriate magnetic flux. However, in absence of magnetic flux spin polarization and spin separation can be simultaneously realized with the adjustment of quantum dot levels, namely, an incident electron from one terminal can select a specific terminal to depart from the quantum dots according to its spin state.  相似文献   

7.
    
Electron transport properties of a triple-terminal Aharonov-Bohm interferometer are theoretically studied. By applying a Rashba spin-orbit coupling to a quantum dot locally, we find that remarkable spin polarization comes about in the electron transport process with tuning the structure parameters, i.e., the magnetic flux or quantum dot levels. When the quantum dot levels are aligned with the Fermi level, there only appear spin polarization in this structure by the presence of an appropriate magnetic flux. However,in absence of magnetic flux spin polarization and spin separation can be simultaneously realized with the adjustment of quantum dot levels, namely, an incident electron from one terminal can select a specific terminal to depart from the quantum dots according to its spin state.  相似文献   

8.
With the aid of the nonequilibrium Green's function and the Lang-Firsov canonical transformation, we investigate the joint effects of a phononic environment and the spin-flip scattering on the Andreev reflection (AR) in a ferromagnet/single-molecular quantum dot/superconductor (FM/MQD/SC) system. In the presence of the strong electron-phonon interaction (EPI), it is found that the EPI strongly suppresses the AR current (called the Franck-Condon blockade). When the coherent spin-flip (similar to a transverse magnetic field) is taken into account within the MQD, the AR current is significantly enhanced, furthermore, the spin-polarized AR current or even the pure spin-polarized AR current can be generated. By tuning the system parameters, the amplitude and direction of the AR current can be changed, this provides an efficient mechanism for controlling the AR process.  相似文献   

9.
In this Letter, we investigate the transport through a T-shaped double quantum dot coupled to two normal metal leads left and right and a superconducting lead. Analytical expressions of Andreev transmission and local density of states of the system at zero temperature have been obtained. We study the role of the superconducting lead in the quantum interferometric features of the double quantum dot. We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. Our results show that as a consequence of quantum interference and proximity effect, the transmission from normal to normal lead exhibits Fano resonances due to Andreev bound states. We find that this interference effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads.  相似文献   

10.
         下载免费PDF全文
贺泽龙  吕天全  张迪 《中国物理 B》2013,22(2):27306-027306
Using the nonequilibrium Green’s function technique,electron transport through a laterally coupled vertical triple quantum dot is investigated.The conductance as a function of electron energy is numerically calculated.The evolution of the conductance strongly depends on the configuration of dot levels and interdot coupling strengths.  相似文献   

11.
         下载免费PDF全文
江兆潭 《中国物理 B》2010,19(7):77307-077307
This paper investigates Kondo transport properties in a quadruple quantum dot (QD) based on the slave-boson mean field theory and the non-equilibrium Green’s function.In the quadruple QD structure one Kondo-type QD sandwiched between two leads is side coupled to two separate QD structures:a single-QD atom and a double-QD molecule.It shows that the conductance valleys and peaks always appear in pairs and by tuning the energy levels in three side QDs,the one-,two-,or three-valley conductance pattern can be obtained.Furthermore,it finds that whether the valley and the peak can appear is closely dependent on the specific values of the interdot couplings and the energy level difference between the two QDs in the molecule.More interestingly,an extra novel conductance peak can be produced by the coexistence of the two different kinds of side QD structures.  相似文献   

12.
    
Based on the Kubo formula for an electron tunneling junction, we revisit the nonequilibrium transport properties through a quantum dot. Since the Fermilevel of the quantum dot is set by the conduction electrons of the leads, wecalculate the electron current from the left side by assuming the quantumdot coupled to the right lead as another side of the tunneling junction, and the other way round is used to calculate the current from the right side. By symmetrizing these two currents, an effective local density states on the dot can be obtained, and is discussed at high and low temperatures, respectively.  相似文献   

13.
We theoretically study the thermoelectric transport properties through a triple quantum dots (QDs) device with the central QD coupled to a ferromagnetic lead, a superconducting one, and two side QDs with spin-dependent interdot tunneling coupling. The thermoelectric coefficients are calculated in the linear response regime by means of nonequilibrium Green's function method. The thermopower is determined by the single-electron tunneling processes at the edge of superconducting gap. Near the outside of the gap edge the thermopower is enhanced while thermal conductance is suppressed, as a result, the charge figure of merit can be greatly improved as the gap appropriately increases. In the same way, charge figure of merit also can be greatly improved near the outside of the gap edge by adjusting interdot tunneling coupling and asymmetry coupling of the side QDs to central QD. Moreover, the appropriate increase of the interdot tunneling splitting and spin polarization of ferromagnetic lead not only can improve charge thermopower and charge figure of merit, but also can enhance spin thermopower and spin figure of merit. Especially, the interdot tunneling splitting scheme provides a method of controlling charge (spin) figure merit by external magnetic field.  相似文献   

14.
In order to consider the Dirac-like spectrum of graphene we employ the Bogoliubov de Gennes–Dirac formalism to determine the quasiparticle Andreev levels in an NS surface (normal–superconductor). The normal region is characterized by a width L while the superconducting region is semi-infinite and both regions are made of doped graphene. The quasiparticle energy spectrum is originated by the Andreev reflections that occur in the NS interface. It is shown that this spectrum depends on the width of the normal region and the Fermi energy in each region. When the Fermi energy in the normal metal is lower than the gap of the superconductor region, the spectrum is affected by specular Andreev reflections. The equation that is obtained to find the spectrum is very general and we solve it for some particular cases. We find that the energy spectrum oscillates when the Fermi energy in graphene is changed. Finally we obtain under some approximations an equation for the energy spectrum which is similar in structure as those obtained for an INS conventional junction.  相似文献   

15.
The tunneling conductance through the half-metal/conical magnet/superconductor (HM/CM/SC) junctions is investigated with the use of the Bogoliubov–de Gennes equations in the framework of Blonder–Tinkham–Klapwijk formalism. Due to the spin band separation in the HM, the conductance in the subgap region is mainly determined by the anomalous Andreev reflection, the probability of which strongly depends on the spin transmission in the CM layer. We show that the spins of electrons injected from the HM can be transmitted through the CM to the SC either adiabatically or non-adiabatically depending on the period of the spatial modulation of the exchange field. We find that the conductance in the subgap region oscillates as a function of the CM layer thickness wherein the oscillations transform from the irregular pattern in the non-adiabatic regime to the regular one in the adiabatic regime. For both adiabatic and non-adiabatic transport regimes the conductance is studied over a broad range of parameters determining the spiral magnetization in the CM. We find that in the non-adiabatic regime, the decrease of the exchange field amplitude in the CM leads to the emergence of the conductance peak for the particular CM thickness in agreement with recent experiments.  相似文献   

16.
The ionized dopants, working as quantum dots in silicon nanowires, exhibit potential advantages for the development of atomic-scale transistors. We investigate single electron tunneling through a phosphorus dopant induced quantum dots array in heavily n-doped junctionless nanowire transistors. Several subpeaks splittings in current oscillations are clearly observed due to the coupling of the quantum dots at the temperature of 6 K. The transport behaviors change from resonance tunneling to hoping conduction with increased temperature. The charging energy of the phosphorus donors is approximately 12.8 meV. This work helps clear the basic mechanism of electron transport through donor-induced quantum dots and electron transport properties in the heavily doped nanowire through dopant engineering.  相似文献   

17.
《Physics letters. A》2014,378(5-6):602-607
The Zn0.32Co0.68O1  v/Pb hybrid junctions were prepared, where the concentrated magnetic semiconductor Zn0.32Co0.68O1  v is in the region of variable range hopping transport instead of the ballistic or diffusive transport. The high differential conductance peak at gap voltage and two above-gap peaks were observed below the superconducting critical temperature. Moreover, both the zero bias conductance peak and the finite bias conductance peak were observed below the gap voltage. All these differential conductance peaks systematically evolve and finally disappear as the temperature or the magnetic field increases. These transport phenomena were explained by phase coherent Andreev reflection in the presence of strong disorder, magnetic impurity scattering, and spin polarization.  相似文献   

18.
We investigate the full counting statistics of a voltage-driven normal metal(N)–superconductor(S) contact. In the low-bias regime below the superconducting gap, the NS contact can be mapped onto a purely normal contact, albeit with doubled voltage and counting fields. Hence in this regime the transport characteristics can be obtained by the corresponding substitution of the normal metal results. The elementary processes are single Andreev transfers and electron- and hole-like Andreev transfers. Considering Lorentzian voltage pulses we find an optimal quantization for half-integer Levitons.  相似文献   

19.
通过稳态光谱和时间分辨荧光光谱研究了巯基丙酸(MPA)分子对由量子点到ZnO纳米粒子薄膜的电荷转移过程的影响。研究发现,相对于CdSe纳米粒子薄膜样品,没有MPA分子参与作用的CdSe/ZnO薄膜样品和有MPA分子连接的CdSe/MPA/ZnO薄膜样品中都存在从CdSe量子点到ZnO纳米粒子薄膜的有效电荷分离过程,但是相对于CdSe/ZnO样品,CdSe/MPA/ZnO样品中电荷转移速率明显变小。这表明MPA分子本身它并不能促进CdSe到ZnO电荷分离过程,因此可以认为用金属氧化物薄膜直接吸附量子点吸收材料,将能获得高功率转换效率的量子点敏化太阳能电池。  相似文献   

20.
采用格林函数方法,计算了电子通过量子点输运的微分电导,计算结果显示电导与偏压关系曲线中出现一个狭窄的电导尖峰和一个展宽的电导峰,与实验观测一致,本文分析了两个电导峰出现的物理原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号