首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以α-Al2O3和TiB2为主要原料,采用真空热压烧结工艺制备机床用Al2O3/TiB2复相陶瓷刀具材料。测试和分析了烧结样品的相对密度、弯曲强度、断裂韧性、硬度值、相组成以及显微结构。结果表明,当α-Al2O3添加量为75 wt%,微米TiB2添加量为20 wt%时,所制备的Al2O3/TiB2复相陶瓷刀具材料性能最佳,其相对密度值为98.8%,弯曲强度为606.25 MPa,断裂韧性为4.85 MPa·m1/2,硬度值为26.55 GPa。最佳样品的主晶相为刚玉(Al2O3)和硼化钛(TiB2),次要晶相为氧化钇(Y2O3)。  相似文献   

2.
以SiC为基体,Y_2O_3和Al_2O_3为烧结助剂,氮化硼纳米管(BNNTs)为增韧补强剂,采用喷雾造粒和干压成型方法,通过真空无压烧结工艺制备了BNNTs/SiC陶瓷复合材料。讨论BNNTs添加量和烧结工艺对BNNTs/SiC陶瓷复合材料的致密度、微观结构和力学性能的影响。实验结果表明:采用单因素法得到BNNTs的最佳添加量为1.5 wt.%和压制压力为100 MPa,确定了最佳烧成制度为:最高温度2050℃,保温时间2.5 h。采用阿基米德排水法测试样品密度,其相对密度达到99.0%,通过三点弯曲法和压痕法分别测试了样品的抗弯强度、断裂韧性和维氏硬度。BNNTs/SiC的抗弯强度、断裂韧性和维氏硬度分别达到了546.3 MPa、6.53 MPa·m~(1/2)和26.8 GPa。  相似文献   

3.
以碳化硅微粉为原料、石墨为固体润滑添加剂,采用无压烧结技术制备碳化硅/石墨复合陶瓷密封材料,研究了石墨添加量对复合陶瓷密封材料烧结性能、显微结构、力学性能和摩擦性能的影响。结果表明,加入的石墨能以片状颗粒形态均匀分布在碳化硅陶瓷基体中;随着石墨添加量增加,复合陶瓷密封材料的体积密度、抗弯强度、弹性模量、断裂韧性、硬度均逐渐降低,但干、湿静摩擦系数则随之减小;当石墨添加量达到20%(质量分数)时,复合陶瓷的相对密度仅为90.6%,弯曲强度降至189 MPa,弹性模量降至295 GPa,断裂韧性为1.82 MPa·m1/2,Vickers硬度为19.2 GPa,而干、湿摩擦系数则分别减小到0.14和0.10。综合考虑复合陶瓷的力学性能和摩擦性能,石墨添加量控制在10%~15%之间为宜。  相似文献   

4.
以微米级Si3N4和h-BN粉末为原料,CaF2–Al2O3–Y2O3为烧结助剂,采用常压烧结工艺制备了BN体积含量为25%的Si3N4/BN复相陶瓷。研究了CaF2添加量对Si3N4/BN复相陶瓷材料力学性能的影响,并通过X射线衍射和场发射扫描电镜分析了复相陶瓷的物相组成和显微组织。结果表明:随着CaF2添加量增加,制备的Si3N4/BN复相陶瓷材料气孔率逐渐增大,收缩率变小,相对密度减小。添加量为2%(质量分数)时,Si3N4/BN复相陶瓷的室温抗弯强度达145.5MPa。添加适量的CaF2可在Si3N4/BN复相陶瓷材料常压烧结过程中较大程度地破坏h-BN的卡片房式结构,将微米级的h-BN颗粒变成纳米级颗粒。  相似文献   

5.
以钇铝石榴石(YAG)为添加相,采用热压烧结法制备YAG–TiCN复合陶瓷。研究了不同YAG添加量对复合陶瓷的物相、显微结构、力学性能的影响。结果表明:热压烧结过程中TiCN和YAG不发生反应;YAG第二相明显改善了TiCN的烧结性能,并有助于提高YAG–TiCN复合陶瓷的硬度、抗弯强度和断裂韧性;YAG含量在10%(质量分数)时复合陶瓷的致密度达到99.3%,并且Vickers硬度、断裂韧性、抗弯强度均达到最高,分别为:20.48GPa、7.27MPa·m1/2、570.36MPa,远远超过TiCN单相陶瓷的致密度以及力学性能:88.04%、9.33GPa、5MPa·m1/2、204.45MPa。YAG作为添加相可显著提高TiCN等难烧结陶瓷的致密度和力学性能。  相似文献   

6.
以钇铝石榴石(YAG)为添加相,采用热压烧结法制备YAG–TiCN复合陶瓷。研究了不同YAG添加量对复合陶瓷的物相、显微结构、力学性能的影响。结果表明:热压烧结过程中TiCN和YAG不发生反应;YAG第二相明显改善了TiCN的烧结性能,并有助于提高YAG–TiCN复合陶瓷的硬度、抗弯强度和断裂韧性;YAG含量在10%(质量分数)时复合陶瓷的致密度达到99.3%,并且Vickers硬度、断裂韧性、抗弯强度均达到最高,分别为:20.48 GPa、7.27 MPa·m~(1/2)、570.36 MPa,远远超过TiCN单相陶瓷的致密度以及力学性能:88.04%、9.33 GPa、5 MPa·m~(1/2)、204.45 MPa。YAG作为添加相可显著提高TiCN等难烧结陶瓷的致密度和力学性能。  相似文献   

7.
以钇铝石榴石(YAG)为添加相,采用热压烧结法制备YAG–TiCN复合陶瓷。研究了不同YAG添加量对复合陶瓷的物相、显微结构、力学性能的影响。结果表明:热压烧结过程中TiCN和YAG不发生反应;YAG第二相明显改善了TiCN的烧结性能,并有助于提高YAG–TiCN复合陶瓷的硬度、抗弯强度和断裂韧性;YAG含量在10%(质量分数)时复合陶瓷的致密度达到99.3%,并且Vickers硬度、断裂韧性、抗弯强度均达到最高,分别为:20.48GPa、7.27MPa·m1/2、570.36MPa,远远超过TiCN单相陶瓷的致密度以及力学性能:88.04%、9.33GPa、5MPa·m1/2、204.45MPa。YAG作为添加相可显著提高TiCN等难烧结陶瓷的致密度和力学性能。  相似文献   

8.
以钇铝石榴石(YAG)为添加相,采用热压烧结法制备YAG–TiCN复合陶瓷。研究了不同YAG添加量对复合陶瓷的物相、显微结构、力学性能的影响。结果表明:热压烧结过程中TiCN和YAG不发生反应;YAG第二相明显改善了TiCN的烧结性能,并有助于提高YAG–TiCN复合陶瓷的硬度、抗弯强度和断裂韧性;YAG含量在10%(质量分数)时复合陶瓷的致密度达到99.3%,并且Vickers硬度、断裂韧性、抗弯强度均达到最高,分别为:20.48GPa、7.27MPa·m1/2、570.36MPa,远远超过TiCN单相陶瓷的致密度以及力学性能:88.04%、9.33GPa、5MPa·m1/2、204.45MPa。YAG作为添加相可显著提高TiCN等难烧结陶瓷的致密度和力学性能。  相似文献   

9.
硼化锆基碳化硅复相陶瓷   总被引:2,自引:1,他引:1  
以钇铝石榴石(yttrium aluminum garnet,YAG)为烧结助剂,通过无压烧结工艺制备了ZrB2-SiC复相陶瓷.研究了复相陶瓷的相组成、抗烧蚀性能以及烧结助剂含量、烧结温度对复相陶瓷力学性能和显微结构的影响.结果表明:复相陶瓷的物相组成主要为ZrB2,SiC和少量玻璃相;添加YAG或提高烧结温度能使材料的晶粒显著长大,并显著提高材料的相对密度和力学性能.当YAG含量为9%(质量分数),烧结温度为1 800℃时陶瓷的相对密度为97.1%、Rockwell硬度HRa为88、弯曲强度为296MPa、断裂韧性为5.6MPa·m1/2.复相陶瓷具有优异的超高温抗烧蚀性能,在2800℃烧蚀30min,烧蚀率仅为0.001 mm/s,烧蚀后的显微结构呈现复杂的多层结构.  相似文献   

10.
《陶瓷》2017,(9)
利用氮化硅陶瓷的自增韧技术,使用复合烧结助剂和在氮化硅基体中添加长柱状β-Si_3N_4晶种,制备高断裂韧性的氮化硅陶瓷。采用X射线衍射、扫描电镜、阿基米德法、三点抗弯曲强度、单边切口梁法等测试方法对陶瓷的组成、显微结构、显气孔率以及抗弯强度和断裂韧性等进行了分析与表征。首先研究了无压烧结制备氮化硅陶瓷过程中,烧结助剂(Y_2O_3、Al_2O_3)对其烧结性能和力学性能的影响,当Y_2O_3含量为8wt%,Al_2O_3含量为4wt%时,氮化硅陶瓷的相对密度达95%以上,抗弯强度为674MPa,断裂韧性为6.34MPa·m~(1/2)。再通过引入La_2O_3提高氮化硅晶粒的长径比,使氮化硅陶瓷的抗弯强度和断裂韧性分别达到686MPa和7.42MPa·m~(1/2)。通过无压烧结工艺,在1750℃制备了长柱状的β-Si_3N_4晶种,晶种的平均长度为2.82μm,平均粒径为0.6μm,平均长径比为4.7。笔者着重研究了晶种对氮化硅陶瓷烧结性能和力学性能的影响。在氮化硅陶瓷中加入晶种后,其烧结性能和抗弯强度略有降低,但断裂韧性却得到了很大的提高;且随着晶种添加量的增加,断裂韧性先升高再降低,掺入量为2wt%时断裂韧性达到最大(7.68MPa·m~(1/2)),提高了20%以上。  相似文献   

11.
采用ZrSiO_4和Al_2O_3为原料,通过无压烧结法制备了不同MgO含量的Al_2O_3/Zr O_2/莫来石复相陶瓷,研究了复合陶瓷的显微组织、弯曲强度、断裂韧性和抗热震性能。结果表明:添加MgO有利于ZrO_2四方相的稳定,从而提高了陶瓷的弯曲强度、断裂韧性和抗热震性。MgO添加量为4%时,Al_2O_3/ZrO_2/莫来石复相陶瓷的弯曲强度达到最大值365 MPa,陶瓷的断裂韧性达到5.31 MPa·m~(1/2)。复相陶瓷热震后强度的损失率仅为5.61%。  相似文献   

12.
李君  陈斐  张东明  沈强  张联盟 《硅酸盐学报》2008,36(Z1):103-107
利用流延成型使α-Si3N4晶须在基体中定向排列,并采用热压烧结技术制备了SGN4陶瓷.用X射线衍射和扫描电镜对陶瓷的物相和显微结构进行了研究,讨论了流延成型对坯体中晶须的分布状态的影响和烧结条件对所得到的块体的显微结构的影响.结果表明:流延成型和热压烧结可以使晶须呈一维定向排布;随着烧结温度的升高,烧结样品的相对密度增大;添加10.6%质量分数)α-Si3N4晶须在1500℃下烧结,Si3N4陶瓷的断裂韧性为9.24MPa·m1/2,Vickers硬度为15.740Pa.在1 600℃α-Si3N4转变成的长柱状β-Si3N4颗粒,大大提高了Si3N4陶瓷的力学性能,其断裂韧性和Vickers硬度分别为10.26MPa·m1/2和16.56GPa.  相似文献   

13.
以h-BN为基体材料,ZrO2、AlN、B2O3和Si等为改性剂,采用反应热压烧结工艺制备BN-ZrB2-ZrO2复相陶瓷,研究了烧结温度对BN基复相陶瓷物相组成、致密化、微观结构及力学性能的影响。结果表明:提高烧结温度可促进ZrB2相的形成,烧结后的复合陶瓷中出现SiAlON相;随烧结温度升高,样品相对密度、抗弯强度和断裂韧性都呈现先升高后降低趋势,烧结温度为1 900℃时材料的相对密度、抗弯强度和断裂韧性最高,分别为95.2%、226.0MPa和3.4MPa·m1/2。ZrB2相的存在显著提高了BN基复相陶瓷的力学性能。与热压烧结纯BN陶瓷相比,BN-ZrB2-ZrO2复相陶瓷的抗弯强度提高了183%,且该复相陶瓷主要以沿晶断裂为主,高温下烧结的样品中出现晶粒拔出现象,并伴随有少量穿晶断裂。  相似文献   

14.
为浆料直写成形工艺制备了一种高固相含量的水基ZrO_2陶瓷浆料,并用该工艺打印陶瓷坯体,1350~1550℃烧结后制备ZrO_2陶瓷样品。研究烧结温度对样品收缩率、密度、气孔率、相结构、力学性能、微观形貌和表面质量的影响,并与其他制造工艺进行性能比较。结果表明:在1550℃烧结2 h,直写成形ZrO_2陶瓷综合性能最佳,其晶粒细小、显微结构均匀、致密性好,相对密度、抗弯强度、硬度和断裂韧性分别为99.2%、676MPa、12.5 GPa和6.2 MPa·m~(1/2)。在挤出增材制造工艺中,烧结样品具有高的致密度和优异的力学性能。  相似文献   

15.
以乱层结构h-BN(t-BN)和SiC纳米粉体为原料,B_2O_3为烧结助剂,利用放电等离子烧结技术(SPS)制备出SiC/h-BN复相陶瓷。采用X射线衍射和扫描电子显微镜对试样的物相组成和显微结构进行分析,研究烧结助剂含量对SiC/h-BN复相陶瓷的低温烧结行为、致密化、微观结构及力学性能的影响。结果表明:利用SPS低温烧结方法,添加少量B_2O_3添加剂,可有效地提高复相陶瓷的致密度和力学性能。与无添加剂烧结样品相比,烧结助剂的添加降低了样品烧结收缩起始温度,促进样品中片状h-BN晶粒的移动和重排,提高了颗粒间的结合强度。随着烧结助剂添加量的增加,复相陶瓷致密度显著增加,强度和韧性均呈现先增加后降低的趋势,在B_2O_3添加量为5%时,复相陶瓷相对密度和各项力学性能较高,其相对密度、抗弯强度、断裂韧性和弹性模量分别为96.92%、274.7MPa、2.91MPa·m1/2和127.2GPa,但添加过多B_2O_3,则不利于提高复相陶瓷的力学性能。  相似文献   

16.
氮化硅陶瓷具有优异的物理机械性能和化学性能,被广泛应用于高温、化工、冶金、航空航天等领域。在结构陶瓷中氮化硅陶瓷虽具有相对较高的断裂韧性,但为了进一步拓宽氮化硅陶瓷的运用领域和提高其使用可靠性,改善其断裂韧性一直是该材料研究的重要课题。笔者通过利用氮化硅陶瓷的自增韧技术,使用复合烧结助剂和在氮化硅基体中添加长柱状β-Si_3N_4晶种,制备高断裂韧性的氮化硅陶瓷。采用X射线衍射、扫描电镜、阿基米德法、三点抗弯曲强度、单边切口梁法等测试方法对陶瓷的组成、显微结构、显气孔率以及抗弯强度和断裂韧性等进行了分析与表征。首先研究了无压烧结制备氮化硅陶瓷过程中,烧结助剂(Y_2O_3和Al_2O_3)对其烧结性能和力学性能的影响,当Y_2O_3含量为8wt%,Al_2O_3含量为4wt%时,氮化硅陶瓷的相对密度达95%以上,抗弯强度为674 MPa,断裂韧性为6.34 MPa·m~(1/2)。再通过引入La_2O_3提高氮化硅晶粒的长径比,使氮化硅陶瓷的抗弯强度和断裂韧性达到686 MPa和7.42 MPa·m~(1/2)。笔者通过无压烧结工艺,在1 750℃制备了长柱状的β-Si_3N_4晶种,晶种的平均长度为2.82μm,平均粒径为0.6μm,平均长径比为4.7,着重研究了晶种对氮化硅陶瓷烧结性能和力学性能的影响。氮化硅陶瓷中加入晶种后,其烧结性能和抗弯强度略有降低,但断裂韧性得到了很大的提高;且随着晶种添加量的增加,断裂韧性先升高再降低,掺杂量为2wt%时,断裂韧性达到最大(7.68 MPa·m~(1/2)),提高了20%以上。  相似文献   

17.
采用真空热压烧结工艺,在2150℃及30 MPa压制压力条件下,保温30 min制备了石墨烯/B4 C陶瓷基复合材料.采用拉曼光谱仪、X射线衍射仪和扫描电镜分析了复合材料的物相组成和显微结构,通过测量陶瓷的相对密度、硬度和弯曲强度,研究了氧化石墨烯添加量对B4C烧结行为和力学性能的影响.结果 表明:复合材料的相对密度随着石墨烯含量的增加先增加而后降低.当氧化石墨烯含量为3.0wt%时,复合材料的力学性能达到最大值,其抗弯强度为547 MPa,断裂韧性为4.50 MPa·m1/2,裂纹偏转以及石墨烯拔出是材料力学性能提升的原因;与此同时,该复合材料的电导率达到1.0 S/m以上,达到了电加工所需的电导率水平.  相似文献   

18.
以制备可用电火花加工的氮化硅基陶瓷材料为目的,用Zr N-Ti N作为导电相,以Y_2O_3、La_2O_3、Al N作为烧结助剂,在1750℃无压烧结Si_3N_4-Ti Zr N_2-Ti N复合导电陶瓷。测试了试样的烧结特性、机械性能及导电性能,用XRD和SEM分析表征了试样的物相和显微结构。其结果为:相对密度接近98%;试样的机械性能良好,抗弯强度可达到960 MPa,显微硬度为14.7 GPa,断裂韧性为7.6 MPa·m~(1/2);试样的电阻率由单相氮化硅陶瓷的10~(13)?·cm降低到复合导电陶瓷的10~(-2)?·cm数量级,可用电火花进行加工。物相分析表明,试样中生成了Ti Zr N_2新物相,形成了Si_3N_4-Ti Zr N_2-Ti N复合导电陶瓷。显微分析表明,试样中的三种晶粒均在2μm以下,具有相互结合紧密且分布较均匀的显微结构。  相似文献   

19.
以比表面积为4.26m2/g、氧含量(质量分数,下同)为O.98%和比表面积为17.4m2/g、氧含量为1.69%的2种AlN粉末为原料,用无压烧结工艺制备氮化铝氮化硼(A1N-15BN,BN为15%)复合陶瓷,研究了A1N粉末对复合陶瓷显微结构和性能的影响.结果表明:A1N粉末对复合陶瓷的致密化过程以及陶瓷的性能有重要影响.由于高比表面积A1N粉末的烧结活性好,AlN-15BN复合陶瓷的烧结致密化温度主要集中在1500~1650℃之间.在1650℃烧结3h后,A1N-15BN复合陶瓷的相对密度可达95.6%,热导率为108.4W/(m·K),硬度HRA为72.继续升高烧结温度,A1N-15BN复合陶瓷的致密度变化不大,热导率升高,硬度下降.在1850℃烧结后,A1N-15BN复合陶瓷的热导率为132.6W/(m·K),Rockwell硬度(HRA)为64.2.低比表面积的AIN粉末所制备的A1N-15BN复合陶瓷的致密化过程主要发生在1650~1800℃间.在1850℃烧结3h,制备出A1N-15BN复合陶瓷的相对密度为86.4%,热导率为104.2W/(m·K),HRA为56.2.  相似文献   

20.
烧结工艺对Ti/Al2O3复合材料性能的影响   总被引:1,自引:0,他引:1  
王志  许坤  李宏林  孙卫华 《硅酸盐通报》2005,24(6):18-20,55
利用放电等离子烧结技术探讨了烧结工艺对40%(体积分数)Ti/Al2O3复合材料性能的影响。实验结果表明,复合材料的性能受烧结温度的影响最为显著,过度延长保温时间会使晶粒发生异常长大,材料性能降低。烧结温度1300℃,保温时间8min制备的复合材料力学性能最佳,其弯曲强度、断裂韧性、显微硬度和相对密度分别为1002.22MPa,19.73MPa·m1/2,18.14GPa和99.74%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号