首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bulk anisotropic NdFeB/α-Fe nano-composites were obtained directly from alloys of Nd11Dy0.5Fe82.4−xNbxB6.1 (x=0,0.5,1.0,1.5). High resolution transmission electron microscopy images showed the existence of Nb-rich amorphous grain boundary phase in the alloys with Nb doped. Field emission scanning electron microscope morphologies and X-ray diffraction patterns revealed the grain size and grain alignment of hot pressed and hot deformed nanocomposites. It was found that Nb could refine the grain size and grain texture in hot worked ribbons. Vibrating sample magnetometer results showed that the magnetic properties of the anisotropic nanocomposites were improved with increased Nb doping. The remanence, coercivity and maximum energy product of the bulk anisotropic Nd11Dy0.5Fe80.4Nb2B6.1 nanocomposites were 1.04 T, 563 kA/m and 146 kJ/m3, respectively.  相似文献   

2.
Hysteresis loops and energy products have been calculated systematically by a three-dimensional(3D) software OOMMF for Sm–Co/α-Fe/Sm–Co trilayers with various thicknesses and β, where β is the angle between the easy axis and the field applied perpendicular to the film plane. It is found that trilayers with a perpendicular anisotropy possess considerably larger coercivities and smaller remanences and energy products compared with those with an in-plane anisotropy.Increase of β leads to a fast decrease of the maximum energy product as well as the drop of both remanence and coercivity. Such a drop is much faster than that in the single-phased hard material, which can explain the significant discrepancy between the experiment and the theoretical energy products. Some modeling techniques have been utilized with spin check procedures performed, which yield results in good agreement with the one-dimensional(1D) analytical and experimental data, justifying our calculations. Further, the calculated nucleation fields according to the 3D calculations are larger than those based on the 1D model, whereas the corresponding coercivity is smaller, leading to more square hysteresis loops and better agreement between experimental data and the theory.  相似文献   

3.
We perform first-principles calculations for the three multilayer systems (100)-Co1/Cun, NiCo2Ni/Cun and Co4Cun, and find from a comparison of the results for system 2 and 3 that amplitude and phase of the exchange coupling are sensitive to the magnetic-slab/nonmagnetic-spacer interface. Moreover, we observe that for the system 1 the averaged magnetic moment of the magnetic slab oscillates with the spacer thickness similarly as the exchange coupling.  相似文献   

4.
The influence of the interface exchange coupling on the magnetization reversal process for a FePt/α-Fe/FePt tri-layer structure has been studied through a micromagnetic approach.The analytical formula of the nucleation field has been derived.It is found that the nucleation field increases as the interface coupling constant rises.Especially when the thickness of the soft layer is small,the influence of the exchange coupling on the nucleation field is significant.The angular distributions of the magnetization for various exchange coupling constants have been obtained by numerical calculation.It is found that the angular distribution of the magnetization is discontinuous at the interface of the hard and soft layers.In the meantime,the pinning field decreases with the increase of the thickness of the soft layer and the exchange coupling constant.  相似文献   

5.
We investigate theoretically the effects of Rashba spin–orbit coupling on the spin dependent transport through diluted magnetic semiconductor single and double barrier structures in the presence of a magnetic field. We find that the Rashba spin–orbit coupling gives rise to an enhancement of the negative tunnelling magnetoresistance of the diluted magnetic semiconductor single barrier structure and a pronounced beating pattern in the tunnelling magnetoresistance and spin polarization of the diluted magnetic semiconductor double barrier structure.  相似文献   

6.
A magnetic memory effect is observed in the absorption of electromagnetic waves of 20–70 MHz in YBa2Cu3O7at 77–300 K.  相似文献   

7.
The electrons exchange–correlation influence on the energy carried by the quantum ion-acoustic soliton (QIAS) is succinctly discussed. Starting from the one-dimensional quantum hydrodynamic model (in which the term of exchange–correlation for electrons is included), a deformed Korteweg–de Vries-like equation is derived. It is found that the QIAS energy experiences a depletion as a result of quantum diffraction. This quantum energy depletion may be counteracted by the exchange–correlation effect. The present work can be viewed as a first step towards the investigation of the exchange–correlation effects on the dynamics of solitary waves in quantum plasmas.  相似文献   

8.
Using the Hubbard model in the framework of the tight-binding formulation, we studied the effects of the electron–electron (e–e) interaction on the indirect magnetic exchange coupling between the magnetic impurities embedded in triangular graphene nanoflakes. The results show that the magnitude of the coupling enhances in the presence of the e–e interaction and Rashba spin–orbit interaction (RSOI). The RKKY coupling magnitude depends on the impurity positions in nanoflake and the size of the system, as well.  相似文献   

9.
The effect weak (10–100 kA m–1) low-frequency (10–20 Hz) pulsed magnetic fields have on the surface structure and magnetic characteristics of yttrium–iron garnet Y3Fe5O12 is studied by means of electron and Mössbauer spectroscopy. A mechanism is proposed for the variation of saturation magnetization in Y3Fe5O12 after magnetic pulse treatment. The mechanism is associated with the change in the spin state of iron ions localized in the tetrahedral sublattice.  相似文献   

10.
In many previous temperature estimation schemes,the temperature of a sample is directly read out from the final steady state of a quantum probe,which i5 eoupled to the sample.However,in these studies,information of eorrelations between system(the probe) and reservoir(the sample) is usually eliminated,leading the steady state of the probe is a canonical equilibrium state with respect solely to system's Hamiltonian.To explore the influence of system-reservoir correlations on the estimation precision,we investigate the equilibration dynamics of a spin interacting with a finite temperature bosonic reservoir.By incorporating an intermediate harmonic oscillator or a collective coordinate into the spin,the system-reservoir correlations can be correspondingly encoded in a Gibbs state of an effective Hamilton,which is size consistent with the original bare spin.Extracting information of temperature from this corrected steady state,we find the effect of the systemreservoir correlations on the estimation precision is highly sensitive to the details of the spectral density function of the measured reservoir.  相似文献   

11.
Resistance oscillations as a function of magnetic field were observed in superconductor–magnetic tunnel junctions of Nb–Fe–FeOx–SiO2–Au–Nb. Junctions involving superconductor–magnetic layer superconductor system are exciting because for certain regime of ferromagnetic layer thickness, a Josephson coupling with an intrinsic phase difference of π might be stabilized. For fabrication of the tunnel junctions the thin films were deposited by RF/DC magnetron sputtering. Using photolithography and reactive ion etching, square junctions of size varying from 50 μm to 250 μm were defined. IV characteristics and R vs. H characteristics were studied at 4.2 K. When the magnetic field is applied parallel to the junction plane, measurements of the junction resistance as a function of magnetic field at a fixed temperature show resistance peaks whenever the total magnetic flux through the junction equals an integral multiple of flux quantum. The penetration depth of the superconducting electrodes was estimated from the positions of the resistance peaks.  相似文献   

12.
The bending strength and fracture toughness of sintered Sm-Co permanent magnetic materials are measured. A scanning electron microscope equipped with an energy dispersive X-ray analysis system is employed to investigate the bending fractography. The fracture behavior and micromechanism are discussed. The fracture behavior of sintered Sm-Co permanent magnetic materials exhibits cleavage fracture. Some Sm-rich impurities are found in fracture plane, suggesting that the Sm-rich impurities help reduce the cleavage brittleness of sintered Sm-Co permanent magnetic materials. The possible methods for improving the strength and toughness are also proposed.  相似文献   

13.
We analyze the magnetic properties through two-orbital Hubbard model with the spin–orbit coupling (SOC) interaction in the iron-based superconductors. With the help of the Ising approximation for the Hund’s coupling between the itinerant electrons and the localized spins, we give a self-consistent account of the various magnetic orders observed in pnictides and the pairing symmetry. We also calculate the local density of states (LDOS) of the vortex state when a magnetic field is applied. The LDOS without SOC shows no resonant peak at the vortex core center in the superconducting state, while it shows an obvious resonant peak when SOC is applied.  相似文献   

14.
Microstructure and magnetic properties of melt-spun nanocomposite magnets with nominal compositions of (Nd1−xPrx)9Fe86B5 (x=0–1) were investigated. Substitution of Nd by Pr could significantly improve the hard magnetic properties of the nanocomposite magnets; the intrinsic coercivity (iHc) and the maximum magnetic energy product ((BH)max) increase from 414 kA/m and 124 kJ/m3 for x=0 to 493 kA/m and 152 kJ/m3 for x=0.6, respectively. Further substituting Nd by Pr (x>0.6) strongly weakens exchange-coupling interaction between magnetically hard and soft phases.  相似文献   

15.
贾晓洁  周春兰  朱俊杰  周肃  王文静 《中国物理 B》2016,25(12):127301-127301
It is studied in this paper that the electrical characteristics of the interface between Si O_y N_x/Si N_x stack and silicon wafer affect silicon surface passivation. The effects of precursor flow ratio and deposition temperature of the Si O_y N_x layer on interface parameters, such as interface state density Ditand fixed charge Qf, and the surface passivation quality of silicon are observed. Capacitance–voltage measurements reveal that inserting a thin Si O_y N_x layer between the Si N_x and the silicon wafer can suppress Qfin the film and Ditat the interface. The positive Qfand Ditand a high surface recombination velocity in stacks are observed to increase with the introduced oxygen and minimal hydrogen in the Si O_y N_x film increasing. Prepared by deposition at a low temperature and a low ratio of N_2O/Si H_4 flow rate, the Si O_y N_x/Si N_x stacks result in a low effective surface recombination velocity(Seff) of 6 cm/s on a p-type 1 ?·cm~(–5) ?·cm FZ silicon wafer.The positive relationship between Seffand Ditsuggests that the saturation of the interface defect is the main passivation mechanism although the field-effect passivation provided by the fixed charges also make a contribution to it.  相似文献   

16.
Results of 57Fe Mössbauer, AC and DC susceptibility, grazing incidence X-ray diffraction, resistivity and Rutherford-backscattering measurements on the amorphous alloys ${\text{Fe}}_{100 - x} {\text{Sc}}_x (8 \leqslant x \leqslant 70)$ give for the first time convincing evidence for the antiferromagnetic exchange coupling between Fe-moments. The antiferromagnetic coupling between Fe-moments is for $(8 \leqslant x \leqslant 70)$ limited to certain regions (magnetic clusters) of the sample. The nature of the coupling is of the Heisenberg type. For $8 \leqslant x < 20$ , the magnetic coupling between Fe-moments is across nonmagnetic Sc-atoms. The conduction electrons mediate an indirect magnetic interaction between the Fe-moments. The magnetic exchange coupling between Fe-moments across Sc-atoms is negative. The antiferromagnetic coupling between Fe-moments can be explained by the Ruderman-Kittel-Kasuya-Yosida, RKKY, interaction by taking into account the damped oscillatory behavior of the RKKY interactions.  相似文献   

17.
18.
The effects of magnetic field on the shape evolution of ferromagnetic fcc Fe–Co particles in Cu–0.83 at.% Fe–1.37 at.% Co alloy single crystals were examined using magnetic anisotropy measurements. The Cu–Fe–Co single crystals were aged at 993 K for 2 h to 24 h under a magnetic field of 10 T parallel to either the [001] or [011] direction. The magnetic anisotropy was examined by measuring magnetic torque around the (100) plane. It was found that the fcc Fe–Co particles are elongated in the direction parallel to the magnetic field. Furthermore, the elongation along [001] is more remarkable than that along [011]. The results are explained quantitatively by considering the minimization of the sum of the interface energy, elastic strain energy and magnetostatic energy of spheroidal particles.  相似文献   

19.
Dense nanodonut and nanotip type morphologies are shown to self-evolve in ultrathin cobalt films during growth under vacuum, depending on the level of oxygen incorporation and temperature. The nanodonut morphology forms at room temperature and the corresponding magnetic hysteresis shows exchange bias (~35 Oe shift along the field axis), which is attributed to the presence of CoO and its exchange coupling with cobalt. The morphology evolves into nanotip features with increase of growth temperature, with concurrent elimination of the oxide component and exchange bias.  相似文献   

20.
Physics of the Solid State - Electrodeposition of cobalt on monolayer graphene synthesized by chemical vapor deposition produces Co–CoO/graphene composite structures, which is accompanied by...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号