首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
研究了Mn含量对梯度多孔Mg-Mn合金微弧氧化过程中电压-时间曲线、微弧氧化膜层显微组织、膜层厚度、物相组成以及耐腐蚀性能的影响。结果表明,随Mn元素含量的增加,微弧氧化电压-时间曲线中的起始电压U1、击穿电压U2和稳定电压U3均下降,但是当Mn含量超过2%后,U1、U2、U3均上升,随着Mn元素含量的增加,微弧氧化膜层厚度先降低而后增加。当Mn含量为2%时,梯度多孔Mg-Mn合金表面形成的氧化膜质量最好,孔隙细小、分布均匀,膜层厚度为39.6μm。结合XRD和EDS分析表明,微弧氧化处理后试样表面膜层由Mg2Si O4和Mg O两相组成。随着在模拟体液中浸泡时间的延长,添加2%Mn元素的梯度多孔Mg-Mn合金的质量损失最少,析氢量最低,耐腐蚀性最佳。  相似文献   

2.
以商业用纯钛粉为原料,添加造孔剂碳酸氢铵,通过真空烧结的方法制备了多孔钛。再在浓度为10%稀硫酸溶液的电解液中对制备的多孔钛进行微弧氧化处理。将微弧氧化(MAO)改性后的多孔钛浸泡于模拟体液(SBF)中检测其生物活性,并采用SEM和XRD对改性前后多孔钛及矿化后的样品进行了表征。结果显示,制备的多孔钛孔隙率为70%,其孔结构主要包括两类:即尺寸为几百微米的相互贯通的大孔和分布在大孔壁上的尺寸为几微米的小孔。在电压为100 V下氧化2 min能在多孔钛壁上形成厚度为几百纳米的多孔TiO膜层,且该膜层能诱导磷灰石的形成。这表明,微弧氧化处理后的多孔钛具有优异的生物活性。  相似文献   

3.
纯钛表面微弧氧化多孔陶瓷膜的结构特性   总被引:4,自引:1,他引:3  
采用微弧氧化处理技术和电解液成分的优化设计,在纯钛表面制备了含钙磷的多孔复合陶瓷膜,并考察了陶瓷膜的表面形貌、截面形貌、化学成分、物相构成、生物活性及其与基体的结合强度等特性。研究结果表明:纯钛表面微弧氧化后形成了凹凸不平的多孔陶瓷膜,整个膜层分为表层疏松层、中间过渡层和内部致密层三个区域,总厚度为25~40μm,膜层与基体的界面呈"锯齿状"紧密结合。膜层主要由金红石相TiO2和锐钛矿相TiO2构成;膜层中含有Ca,P,O,Ti四种元素,其钙磷比ω(Ca)∶ω(P)为1.528;膜层中的Ti,Ca,P元素呈梯度分布,由表及里Ti含量逐渐增多,Ca和P含量逐渐减少,O元素分布比较均匀。含钙磷多孔复合陶瓷膜具有良好的生物活性,样品经碱液处理后再在快速钙化溶液(FCS)中浸泡4d即有羟基磷灰石(HA)形成;膜层与基体具有高的结合强度,在450V和600Hz时膜层的临界载荷值高达29.5N。  相似文献   

4.
范兴平  杨成 《热加工工艺》2021,(10):105-108
研究了氧化时间对多孔钛微弧氧化后表面陶瓷层形貌、物相及高温氧化性能的影响.结果 表明,随着氧化时间的延长,试样表面粗糙度逐渐下降,氧化膜层微孔分布逐渐均匀,孔径逐渐减小.在电压电压为350 V下,经30 min微弧氧化表面处理制备出的氧化膜层微孔分布均匀、孔径约6μm,形成了大孔套小孔的多孔层结构.试样表面物相以锐钛型...  相似文献   

5.
目的 探究多孔Ti6Al4V经过微弧氧化(MAO)表面改性后力学性能的变化规律。方法 采用选区激光熔化(Selective Laser Melting,SLM)制备了相对密度分别为0.30、0.38、0.47的多孔Ti6Al4V点阵材料,利用表面化学抛光预处理和MAO工艺在其表面制备MAO膜层,再通过显微观察和单轴压缩试验分析其微观形貌和力学性能。结果 经过表面化学抛光预处理和MAO之后的多级多孔Ti6Al4V表面MAO膜层的孔径大小与脉冲电压及氧化时间呈正相关,膜层厚度和膜层中的钙磷原子比与氧化时间均呈现正相关关系,且在350 V脉冲电压和10 min氧化时间条件下制备的膜层最为均匀。MAO前后多孔Ti6Al4V的压缩应力-应变曲线基本一致,两者的弹性模量和屈服强度均随相对密度的增加而提高。与G-A方程计算的理论值相比,实测的弹性模量略有下降,但不显著,这可能是因为多孔Ti6Al4V在SLM成形过程中由于快速加热和冷却导致残余应力的产生,从而导致其弹性模量减小。同时由于SLM成形的多孔Ti6Al4V点阵材料中的孔隙壁可能低于理论预测中所假设的值,这会使得孔隙壁在加载过程中发生变形或破坏,这也会导致材料整体弹性模量的降低。而实测的屈服强度高于G-A方程计算的理论值,这可能是由于SLM成形多孔Ti6Al4V点阵材料的孔隙结构相较于G-A方程的理论模型更加规则。此外,在对数坐标中,MAO前后的屈服强度与弹性模量呈强正比关系,斜率分别为1.10和1.18,十分趋近于G-A方程的理论值。这亦表明MAO对多孔Ti6Al4V的整体力学性能影响有限。结论 脉冲电压为350 V、氧化时间为10 min条件下MAO工艺所制备的膜层最为均匀,同时MAO对SLM成形多孔Ti6Al4V点阵材料的总体力学性能影响有限。  相似文献   

6.
在硅酸钠、六偏磷酸钠复合电解液中,采用微弧氧化技术在7075铝合金表面原位生长出氧化铝陶瓷膜,研究了阴/阳极电流密度比对陶瓷膜厚度、表面及截面形貌、相组成及耐蚀性等的影响。结果表明:陶瓷膜的厚度、微观形貌、相组成及含量与阳极电流密度和阴阳极电流密度比密切相关,7075铝合金经微弧氧化处理后腐蚀电流密度降低2~4个数量级,耐腐蚀性能大幅提高。  相似文献   

7.
采用粉末冶金制备了多孔钛材料,通过微弧氧化在多孔钛表层生成了含Ca和P的TiO2膜层。探讨了等静压压力对钛材料密度和杨氏弹性模量的影响;研究了微弧氧化膜层的形貌、相组成及其生物活性。结果表明,降低成形压力可有效降低多孔钛的密度和弹性模量;微弧氧化在300V电压时膜层表面粗糙多孔,主要由锐钛矿构成,锐钛矿较难有效诱导磷灰石沉积。  相似文献   

8.
镁合金微弧氧化电解液电导率的研究   总被引:3,自引:0,他引:3  
在硅酸系中对AZ91D镁合金微弧氧化电解液电导率特性进行了研究,并深入分析了电解液电导率对微弧氧化工艺参数和陶瓷膜性能的影响。结果表明,电解液温度对微弧氧化电解液电导率影响较大,温度每升高10℃,电解液电导率约增加12%左右。随着电解液电导率的增大,起弧电压降低,膜层生长速率加快;陶瓷膜耐蚀性先增大后减小,陶瓷膜硬度增长趋势先较快后变缓。  相似文献   

9.
电流密度对微弧氧化膜层厚度和硬度的影响   总被引:19,自引:7,他引:19  
电流密度对微弧氧化陶瓷膜的生长和性能的影响较大,不同的电流密度、工作电压,制得的氧化膜层的厚度、硬度、防护性能也将不同。主要研究电流密度对微弧氧化陶瓷膜的厚度和硬度的影响。  相似文献   

10.
目的优化Ti_2AlNb合金微弧氧化的电解液配方,提高Ti_2AlNb合金微弧氧化膜的耐磨性。方法借助SEM、EDS、XRD研究硅酸盐-磷酸盐电解液体系中Na_2MoO_4浓度对Ti_2AlNb合金微弧氧化膜形貌、成分及相结构的影响。利用CFT-I型磨损试验机测试不同微弧氧化膜的摩擦磨损性能。结果电解液中添加Na_2MoO_4后,微弧氧化膜的生长速率增加,膜层中出现了Mo元素且含量也逐渐增加。Na_2MoO_4的加入降低了Ti_2AlNb合金微弧氧化膜的摩擦系数及比磨损率,但微弧氧化膜的耐磨性并非随Na_2MoO_4含量线性提高。含6 g/L Na_2MoO_4的体系中,微弧氧化膜摩擦系数低至0.25左右,比磨损率仅为1.20×10~(-3) mm~3/(N·m),表面呈轻微磨粒磨损特征。结论电解液中的Na_2MoO_4参与了成膜过程,对Ti_2AlNb合金微弧氧化膜的生长有显著的促进作用,有效地改善了Ti_2AlNb合金微弧氧化膜的耐磨性。  相似文献   

11.
目的 多孔镁具有生物可降解特性,降解过程中产生的碱性环境会促进新生骨形成,其多孔结构可以为新生骨长入提供通道,是一种理想的骨填充材料.与块体镁相比,多孔镁的降解速率更快,为了避免因快速降解引起局部环境碱性过高而可能导致的溶骨现象,需要通过表面改性来降低多孔镁的降解速率,使其降解速率与骨组织愈合速率相匹配.方法 以块体镁...  相似文献   

12.
目的研究CuSO_4浓度和微弧氧化工艺参数(电压、氧化时间)对TC4钛合金微弧氧化膜颜色及性能的影响。方法在磷酸钠电解液中,对TC4钛合金进行微弧氧化处理,并添加CuSO_4获得不同颜色的陶瓷膜,对氧化膜的宏观形貌、微观形貌、物相结构以及硬度进行分析。结果添加CuSO_4能使陶瓷膜颜色变深,随着CuSO_4浓度升高,膜层由灰色逐渐变为红褐色。当CuSO_4质量浓度为0.5 g/L时,氧化膜表面均匀致密,显微硬度最高(627.1HV);当CuSO_4质量浓度为1.5 g/L时,氧化膜显微硬度最低(382.8HV)。随着电压升高,膜层颜色加深,色泽更均匀,但表面硬度下降。在400 V条件下制备的氧化膜硬度最低,但是色泽最均匀。随着氧化时间的延长,氧化膜厚度增加,颜色加深,色泽更为均匀,但是当氧化时间超过15 min后,氧化膜颜色变浅。结论 CuSO_4对微弧氧化膜的显色作用明显,其浓度及微弧氧化工艺参数(电压、氧化时间)均对涂层性能、色泽、致密性、厚度及相组成具有很大的影响。  相似文献   

13.
采用微弧氧化技术,以ZL205A铝合金为基材,固定其它条件不变,只改变电流密度,制备多种氧化膜层,研究了电流密度对膜层的厚度、表面形貌、元素成分、相结构及耐磨性能的影响.结果表明:随电流密度的升高,膜层总厚度和致密层厚度均呈线性增长,同时膜层中的微孔直径增大,但数量减少;膜层的主要成分为Al-Si-O相,其含量随电流密度的增加而增加;氧化膜的磨损机制为磨粒磨损,电流密度对其摩擦因数的影响不大,但其耐磨性能随电流密度的增加而下降,这与外层疏松层的作用有关.  相似文献   

14.
目的 提高医用纯钽的生物活性,利用微弧氧化(MAO)技术在其表面制备出“类骨小梁”状分级多孔涂层,并对比该涂层与传统“火山坑”状MAO涂层以及机械抛光纯钽表面在表面粗糙度、亲水性以及细胞相容性方面的差异。方法 使用0.1 mol/L Na2B4O7和0.05 mol/L Na3PO4电解液在纯钽表面分别制备出“类骨小梁”状及“火山坑”状多孔涂层(分别命名为B-MAO和P-MAO涂层)。采用扫描电镜、X射线衍射以及X射线光电子能谱对不同结构涂层进行形貌观察和相组成分析,使用十字划格法评价涂层结合强度,使用激光共聚焦显微镜测定涂层的表面粗糙度,使用接触角仪测量其亲水性,并将小鼠前成骨细胞(MC3T3-E1)接种于材料表面,对比不同形貌状态对细胞铺展、增殖以及成骨分化的影响。结果 MAO涂层物相主要为Ta2O5。B-MAO涂层由于内部孔隙度高,应力释放充分,涂层结合强度高,而P-MAO涂层则因具有分层现象和较大的残余应力,易从基体剥落。抛光...  相似文献   

15.
氧化时间对钛表面微弧氧化膜层的影响   总被引:2,自引:2,他引:0  
采用恒电流微弧氧化技术,在钛表面制得含HA的TiO2陶瓷膜,考察了氧化时间对氧化膜微观形貌、膜厚、相结构及耐体液腐蚀性能的影响。结果表明,随氧化时间增长,膜层表面多孔形貌变化明显,膜层厚度呈先增后降的趋势。氧化时间延长,膜层相组成由金红石、锐钛矿为主变为以羟基磷灰石为主。模拟体液极化曲线分析表明,微弧氧化膜的钝化行为随氧化时间延长而优异,但氧化时间超过20 min后,增大氧化时间对钝化效果的影响不再明显。  相似文献   

16.
王琪超  杜楠  王帅星  赵晴 《表面技术》2019,48(1):191-199
目的提高Ti6Al4V合金的摩擦学性能。方法在硅酸盐-磷酸盐电解液中添加不同浓度的纳米W粉,利用微弧氧化技术在Ti6Al4V基体表面制备出氧化陶瓷膜。利用FE-SEM、EDS和XRD研究了在不同浓度W粉参与下的微弧氧化膜表截面微观形貌、元素分布及膜层相组成。通过旋转摩擦磨损试验评估了膜层的摩擦学性能。结果电解液中加入纳米W粉可以促进膜厚增长,尤其在含0.5~2 g/L纳米W粉时,膜厚呈近似线性增长;但W粉在膜层表面的附着会导致粗糙度的增大。在纳米W粉参与下,微弧氧化膜中除了锐钛矿、金红石和Al_2TiO_5相之外,W含量也随电解液中颗粒含量的增加而提高。在6 g/L纳米W粉复合下,微弧氧化膜的摩擦系数、比磨损率分别减小了约13.33%和3.53%。结论 W粉颗粒以机械啮合附着在氧化膜表面,部分颗粒随熔融氧化物包裹进入膜层并发现熔化迹象。W粉含量为6 g/L时,制备的氧化膜表面质量有所改善,即微孔和裂纹等有所减少,耐磨性较佳,摩擦系数和比磨损率较不含W粉的膜层均有所减小。  相似文献   

17.
结合国内外微弧氧化技术的研究成果,综述了成膜过程火花放电机理及陶瓷层的生长过程,总结了电解液组成、电源类型、工作模式、电参数以及基体材料等对微弧氧化膜性能的影响。根据近年来微弧氧化技术用于镁合金表面处理的发展状况,介绍并分析了几种封孔处理的优化方法,重点介绍了工艺更为简单的原位封孔技术。同时也对镁合金微弧氧化技术的发展趋势和应用前景进行了展望。  相似文献   

18.
朱强  陈文彬  雷玉成  赵军 《表面技术》2019,48(2):193-199
目的提高碳钢耐液态Pb-Bi耐腐蚀性能。方法采用熔钎焊的方法,对6061铝合金和Q235钢进行搭接焊,焊后采用微弧氧化技术在焊接接头制备微弧氧化陶瓷层,将其放入350℃的高温液态Pb-Bi中进行300h静态腐蚀试验。结果选用钨极氩弧焊机,用ER4043焊丝作为钎料,通过调节焊接参数,在焊接电流为85 A、焊接速度为140 mm/min的参数下,铝层与Q235钢的结合强度达到182 MPa,金属间化合物厚度为7.3μm。在2 g/L KOH+4 g/L Na2Si O3·9H2O的电解液中进行微弧氧化试验,放电孔洞直径和数量随着电流密度的增大而增加。通过对比发现,在10A/dm2下生成的氧化膜层厚度适宜,同时致密性较好,陶瓷层由γ-Al2O3和α-Al2O3组成。经过静态腐蚀后,Q235碳钢母材试样表面被明显腐蚀,而Q235钢微弧氧化后的试样则有较好的耐腐蚀性能,其中10 A/dm2电流密度参数下制得的氧化膜层耐蚀性能最优。结论微弧氧化陶瓷膜层可显著提高材料在高温液态Pb-Bi合金中的耐腐蚀性能,且膜层致密性和厚度会影响其对材料的保护作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号