首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bi2Fe4O9 (BFO) is one of the most important photocatalyst materials and its composition with graphene may leave an optimizing effect on the photocatalytic performance. In this paper, reduced graphene oxide (RGO) with various contents is selected to be composited with BFO successfully via one‐step hydrothermal method. A series of BFO‐xRGO (x=0, 1.25, 2.50, 3.75, 5, 6.25, and 7.50 wt.%) were prepared and the effects of RGO content on crystalline, light absorption, impedance, and photocatalytic degradation rate of methyl violet (MV) solution are characterized. The entire film samples exhibit enhanced photocatalytic efficiency. Especially, with 5 wt.% RGO content added, the film sample shows the best photocatalytic degradation efficiency with a MV solution degradation rate of 95%. This implies that the composition of RGO allows BFO‐based thin film as an efficient photocatalyst candidate, and as well, the BFO/RGO composite possesses the potential for better use in the related photocatalyst applications.  相似文献   

2.
Here we report that separately decorating TiO2 (P25) nanoparticles and CoOx cocatalyst on a single reduced graphene oxide (rGO) sheet results in an advanced photocatalyst, P25–rGO–Co, which exhibits enhanced photocatalytic performances for selective H2 or O2 evolution from water splitting. Characterization results show that rGO can not only efficiently accept and transport photogenerated electrons but also shuttle holes to CoOx cocatalyst simultaneously, achieving an efficient spatial charge separation on P25–rGO–Co, thus improving the half-reaction efficiency.  相似文献   

3.

Abstract  

A series of (Cu0.94La0.06)2SnO4 photocatalysts were prepared under different calcination temperatures using a simple co-precipitation method. The crystalline structures of the as-prepared photocatalysts, as well as their particle sizes, photo absorption, and the effect of calcination temperature, were investigated using x-ray powder diffraction, Brunauer–Emmett–Teller method, transmission electron microscopy, and UV−Vis diffuse reflectance spectroscopy, respectively. The photocatalytic activity of (Cu0.94La0.06)2SnO4 nanocomposite oxide was evaluated using the photodegradation efficiency of acid blue 62 (AB62) as a probe under simulated sunlight irradiation. The photocatalytic experimental results show that the maximum specific photocatalytic activity of the (Cu0.94La0.06)2SnO4 photocatalyst appears after calcination at 450 °C for 2.5 h because of the good crystallization and small crystal size of the sample. Under simulated sunlight irradiation, the AB62 aqueous solution can reach a degradation rate of 97.71% in 2 h, showing that the (Cu0.94La0.06)2SnO4 nanocomposite photocatalyst has a much higher photocatalytic activity than the standard Degussa P25 photocatalyst.  相似文献   

4.
Visible-light-induced titania/sulfanilic acid nano-composite photocatalysts were prepared and characterized by FTIR, XPS, UV-vis, XRD, and SEM. The results indicate that the formation of Ti-O-S bonds after the modification of P25 TiO2 nanoparticles with sulfanilic acid ligands extends the photoresponse of the photocatalyst from the UV to the visible range. The photocatalytic activity of the nano-composite photocatalyst was examined by degrading Congo red under visible light, in which its effecting factors such as irradiation time, catalyst dosage, solution pH and the addition of H2O2, were investigated in detail. The possible mechanism of photocatalytic degradation under visible irradiation has been also presented.  相似文献   

5.
《Ceramics International》2017,43(4):3510-3520
Environment-friendly photocatalysts with wide spectral responses for water decontamination are currently in demand. Ternary iron–zinc–copper mixed oxides with various molar ratios of Fe3O4/CuO to ZnO and ternary mixed oxides incorporated on graphene were synthesized using sol–gel and hydrothermal methods. The physicochemical properties of these magnetically separable materials were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, infrared absorption spectroscopy, UV–Vis spectroscopy, vibrating sample magnetometry, and Brunauer–Emmett–Teller (BET) surface area analysis. Furthermore, their photocatalytic and adsorptive properties were investigated using methylene blue as a model organic pollutant. Owing to their higher specific surface area and saturation magnetization, the ternary mixed oxides incorporated on graphene served as better adsorbents and photocatalysts than those without graphene. The adsorption process followed a pseudo-second-order kinetic model and Langmuir adsorption isotherm model, with a maximum adsorption capacity of 68.03 mg/g. The ternary mixed oxide with an Fe3O4/CuO to ZnO molar ratio of 1:3 showed better photocatalytic activity under both UV and visible light irradiation, and the efficiency increased with increasing graphene incorporation in the photocatalyst. Moreover, the photocatalyst maintained high efficiency with repetitive use. Radical scavenging experiments revealed that holes were the predominant oxidative species involved in the photodegradation of methylene blue. Thus, these magnetically separable photocatalysts are effective for the removal of organic pollutants from wastewater.  相似文献   

6.
P25 powder embedded and TiO2 immobilized on activated carbon (TiO2-P25/AC) was prepared by P25 powder modified sol-gel and dip-coated method. The photocatalysts were characterized by XRD, BET, SEM and their photocatalytic activities were evaluated through phenol degradation in a fluidized bed photoreactor. The addition of P25 in the photocatalysts could significantly enhance the photocatalytic activity, and the optimum loading of P25 was 3 g L?1. The operating parameter results indicated that the optimum pH for phenol degradation was 5.2; the effect of air flow rate gave an optimal value of 2 L min?1; the increasing of UV light intensity led to an increase of degradation efficiency due to more photons absorbed on the surface of the photocatalyst. The kinetics of the phenol degradation fitted well with the Langmuir-Hinshelwood kinetics model. Finally, the photocatalytic ability of TiO2-P25/AC was reduced only 10% after five cycles for phenol degradation.  相似文献   

7.
Flower-like SnS2 decorated with MgFe2O4 nanoparticles and reduced graphene oxide (rGO) nanosheets were successfully synthesized by a facile solvothermal method. The morphological and crystal structure results confirmed that MgFe2O4 nanospheres were uniformly anchored on the surface of SnS2 flower-like structure with the decoration of rGO nanosheets. The UV–vis diffuse reflectance spectra indicated that the SnS2–MgFe2O4/rGO photocatalyst had a strong visible light absorption. The sample exhibited the highest photocatalytic activity for the degradation of methylene blue under visible light irradiation. The mechanism of improved photocatalytic activity was finally proposed.  相似文献   

8.
A novel method was developed to synthesize graphite oxide/TiO2 composites as a highly efficient photocatalyst by in situ depositing TiO2 nanoparticles on graphene oxide nano-sheets by a liquid phase deposition, followed by a calcination treatment at 200 °C. The two-dimensional porous graphene oxide/TiO2 composites had specific surface area of 80 m2 g−1 being considerably larger than that of P25 and the similarly prepared neat TiO2 particles without using graphene oxide. The composites exhibited excellent photocatalytic activity, being influenced by post-calcination temperature, graphene oxide content and solution pH. Under optimal conditions, the photo-oxidative degradation rate of methyl orange and the photo-reductive conversion rate of Cr(VI) over the composites were as high as 7.4 and 5.4 times that over P25, respectively. The excellent enhancing effect of graphene oxide nano-sheets on the photocatalytic properties of TiO2 was attributed to a thin two-dimensional sheet support, a large surface area and much increased adsorption capacity, and the strong electron transfer ability of the thermally reduced graphene oxide in the composite.  相似文献   

9.
A new catalyst based on biosilica doped with palladium(II) chloride nanoparticles was prepared and tested for efficient degradation of methyl orange (MO) in water solution under UV light excitation. The obtained photocatalyst was characterized by X-ray diffraction, TEM and N2 adsorption/desorption isotherms. The photocatalytic degradation process was studied as a function of pH of the solution, temperature, UV irradiation time, and MO initial concentration. The possibilities of recycling and durability of the prepared photocatalysts were also tested. Products of photocatalytic degradation were identified by liquid chromatography–mass spectrometry analyses. The photocatalyst exhibited excellent photodegradation activity toward MO degradation under UV light irradiation. Rapid photocatalytic degradation was found to take place within one minute with an efficiency of 85% reaching over 98% after 75 min. The proposed mechanism of photodegradation is based on the assumption that both HO and O2•− radicals, as strongly oxidizing species that can participate in the dye degradation reaction, are generated by the attacks of photons emitted from diatom biosilica (photonic scattering effect) under the influence of UV light excitation. The degradation efficiency significantly increases as the intensity of photons emitted from biosilica is enhanced by palladium(II) chloride nanoparticles immobilized on biosilica (synergetic photonic scattering effect).  相似文献   

10.
TiO2 nanopowder with a large surface area and high crystallinity was synthesized by a thermal decomposition process. The physicochemical properties of the prepared powders were examined by X-ray diffraction, transmission electron microscopy and nitrogen adsorption-desorption isotherms. The nanocrystallites of the prepared powers were considerably smaller than those of the commercial photocatalyst (Degussa, P25), and the particles had a dense polyhedral structure. In addition, the particles had a mainly disordered mesoporous structure with a pore volume that varied according to the pore size in the range of 2-20 nm. The photocatalytic activity of the prepared photocatalyst was obviously higher than that of P25 on the photodegradation of gaseous nitrogen oxides under UV254 + 185 nm lamp irradiation. Above 40% relative humidity, the NOx removal efficiency of the prepared photocatalyst was 10% higher than that of P25. Furthermore, a suitable relative humidity and longer residence time were found to enhance the photocatalytic oxidation of gaseous nitrogen oxides by UV254 + 185 nm lamp irradiation and TiO2 nanoparticles.  相似文献   

11.
《Ceramics International》2022,48(5):6078-6086
Developing interfacial connections is one of the breakthrough strategies to improve the photocatalytic activity of graphene/p-n heterojunction systems. Herein, natural tragacanth mucilage, for the first time, was employed as cost-effective and ecofriendly surfactant to prepare highly efficient ZnO–ZnBi2O4/graphene hybrid photocatalyst. The results indicated that the methylene blue (MB) photocatalytic degradation efficiency of ZnO–ZnBi2O4/graphene-mucilage heterojunction, containing 10 wt% ZnBi2O4 and 1 wt% graphene, was ~1.2, 1.4, 3.1 and 8.3 times higher than that of ZnO–ZnBi2O4/graphene, ZnO–ZnBi2O4, ZnBi2O4 and ZnO samples, respectively. This significant improvement in the photocatalytic performance could be mainly ascribed to the desirable advantages of using natural mucilage as surfactant, including uniform distribution of ZnO–ZnBi2O4 nanoparticles on the surface of graphene sheets, increasing of the effective surface area, and improving of the charge carriers separation. Based on the trapping experiments, electron spin resonance and photoelectrochemical Mott-Schottky tests, direct Z-Scheme charge transfer mechanism with hydroxyl radicals as main active species was suggested for photocatalytic degradation of MB on the ZnO–ZnBi2O4/graphene-mucilage nanocomposite. This study provides a new insight to fabricate more homogeneous and close contact interfaces in graphene-based hybrid photocatalytic systems for environmental remediation.  相似文献   

12.
We report here a facile preparation of graphene quantum dots (GQDs) by chemical exfoliation of multiwall carbon nanotubes (MWCNTs) using a modified hummers' method. The resultant GQD samples possess strong electronic property, revealing great potential for photocatalyst design. As an efficient promoter, GQDs/P25 nanocomposites have been successfully prepared by simple wet impregnation and subsequent thermal annealing at 200 °C. In the tests of photocatalytic degradation of organic dyes under visible-light irradiation, the GQDs promoted P25 samples which shows much higher photocatalytic activity compared to the pure P25, indicating the crucial roles of GQDs.  相似文献   

13.
Porous peanut-like BiVO4 and BiVO4/Fe3O4 submicron structures were synthesized by a template-free hydrothermal process at 160 °C for 24 h. The as-synthesized samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM) and UVvis spectroscopy. The photocatalytic activity of BiVO4 and BiVO4/Fe3O4 submicron structures were evaluated for the degradation of Rhodamine B (RhB) and methylene blue (MB) under visible light irradiation with and without the assistance of H2O2. According to the experimental results obtained, porous peanut-like BiVO4/Fe3O4 composite photocatalyst shows higher photocatalytic activity in the H2O2-assisted system under visible light irradiation compared to BiVO4. Recycling test on the BiVO4/Fe3O4 composite photocatalyst for the degradation of RhB under visible light irradiation indicates that the composite photocatalyst is stable in the H2O2-assisted system in five cycles. Therefore, this composite photocatalyst will be beneficial for efficient degradation of organic pollutants present in water and air under solar light.  相似文献   

14.
《Ceramics International》2023,49(6):9657-9671
Photocatalytic degradation by visible light-driven generation of reactive oxygen species shows great promise for purification of environmental water. However, such degradation is limited by the low separation efficiency of photogenerated carriers and the poor adsorption capacity of the photocatalyst itself. To solve these problems, we successfully constructed and prepared a composite hydrogel (BV-GH) combining a three-dimensional network structure composed of graphene oxide and BiVO4 to achieve the synergistic effects of adsorption enrichment and photocatalytic degradation. The results show that the amount of methylene blue and methyl orange adsorbed by BV-GH is 258.78 mg g?1 and 217.16 mg g?1, respectively, which is much higher than that obtained for pure BiVO4. Due to the synergistic effect of adsorption enrichment and photocatalytic degradation, the degradation rate of the dye by BV-GH reaches 94.18% in 60 min, which is 6.98 times higher than that obtained for pure BiVO4. Electron spin-resonance (ESR) experiments confirm that the main factor affecting the dye degradation by BV-GH is the ability to produce more ·OH and ·O2?, which is an important reason for the excellent antibacterial performance of BV-GH against E. coli. This work can provide further inspiration for photocatalytic technology in water purification.  相似文献   

15.
The present work demonstrates a facile route for preparing LaFeO3/rGO nanocomposites comprising of metal oxide nanoparticles and graphene. Structural, morphology, optical and photocatalytic studies of the samples were characterized using powder X-ray diffraction (XRD), FT-IR, Raman, high resolution scanning electron microscopy (HRSEM), high resolution transmission electron microscope (HRTEM), atomic force microscopy (AFM), thermogravimetry (TGA), X-ray photoelectron spectroscopy, UV–visible and photocatalytic. LaFeO3/rGO nanocomposites believed as an effective photocatalyst for the degradation of methyl orange (MO) dye under visible light irradiation. The inclusion of carbon enhances the light absorption of LaFeO3, resulting in the enhanced photocatalytic activity of the nanocomposite. The degradation of MO dye under visible light source was completely achieved using LaFeO3/rGO as a catalyst.  相似文献   

16.
Visible-light-induced BiVO4 photocatalyst has been successfully synthesized via a solution combustion synthesis (SCS) method. The photocatalytic activities of the as-synthesized sample were evaluated by the photodegradation of rhodamine B (RhB) and phenol under visible-light irradiation (λ > 420 nm). The decolorization of high-concentrated RhB (10− 4 M) and the variation of the chemical oxygen demand (COD), demonstrated that the BiVO4 photocatalyst was efficient in aromatic organic compounds degradation. The reduction of total organic carbon (TOC) (about 22.0% after 4.5 h of irradiation) showed that the mineralization of RhB over the BiVO4 photocatalyst is realized. Additionally, much enhanced photocatalytic performance for phenol degradation was also realized with the assistance of appropriate amount of H2O2.  相似文献   

17.
In this study, Zr-Ag co-doped TiO2 (ZAT) photocatalyst films having varied numbers of layers (1, 2, 3, and 4) have been developed to coat on ceramic tile substrates by sol-gel spin coating technique. The specimens were tested to determine antibacterial activity against Escherichia coli and the capability to degrade gaseous formaldehyde under visible light. X-ray diffraction, ultraviolet and visible absorption spectroscopy, water contact angle, and scanning electron microscopy were applied to characterize the structural and morphological properties of the samples. The photocatalytic reactivity of the nanocomposite films was investigated by the decolorization of methylene blue (MB) dye under visible light irradiation. The results showed that the two-layer ZAT photocatalyst film on ceramic tile exhibited the highest photocatalytic decolorization of MB, with 60.36% efficiency. The ZAT tile had formaldehyde degradation efficiency up to 32.74% within only 6 h under visible light irradiation, higher than that of the bare ceramic tile (4.90%). Additionally, the ZAT thin films could enhance anti-E. coli activity and could be capable of degrading air pollution.  相似文献   

18.
《Ceramics International》2020,46(9):13517-13526
In this study, a magnetically recyclable Ni1-xCdxCeyFe2-yO4-rGO (x, y = 0.05) (NCCF-rGO) nanocomposite photocatalyst has been prepared by following a facile in-situ co-precipitation method combined with ultra-sonication means. The as-synthesized magnetically separable NCCF-rGO nanocomposite photocatalyst efficiently degrades methylene blue (MB) dye in comparison to bare Ni1-xCdxCeyFe2-yO4 (x, y = 0.05) (NCCF) nanoparticles (NPs) under visible light irradiation. The photo-degradation rate of MB with NCCF-rGO was ~9 times higher than NCCF nanoparticles (NPs). This enhanced photocatalytic performance of NCCF-rGO photocatalyst was due to the presence of reduced graphene oxide, which greatly help in production of photoactive species by reducing the rate of electro-hole pair recombination. The role of photoactive species that were responsible for the photocatalytic degradation of methylene blue has also been investigated. The as-synthesized NCCF-rGO photocatalyst expressed superb chemical stability and photocatalytic activity even after seven cycle runs. Moreover, the NCCF-rGO nanocomposite worked at all pH values and showed good acid resistance. In particular, the as-synthesized NCCF-rGO photocatalyst could be collected for the next cycle run by simply applying an external magnetic field. Hence, the NCCF-rGO nanocomposite could have potential use in organic dyes contained wastewater treatment.  相似文献   

19.
In this study, an impinging streams cyclone reactor has been utilized as a novel apparatus in photocatalytic degradation of phenol. Degussa P25 TiO2 nano particles have been applied as the photocatalyst under UV radiation. The operating parameters including catalyst loading, pH, initial phenol concentration and light Intensity have been found to affect the efficiency of the photocatalytic degradation process within this photoreactor. Photocatalytic degradation of phenol has been also investigated in a continuous flow impinging streams system. The results have shown a higher efficiency and an increased performance capability of the present reactor in comparison with the conventional processes.  相似文献   

20.
Photocatalyst loading on a floating substitute is accepted as a promising method for the remediation of diesel‐polluted surface water. Therefore, novel photocatalysts based on polyurethane foams modified with silver/titanium dioxide/graphene ternary nanoparticles (PU–Ag/P25/G) were synthesized and investigated. Scanning electron microscopy, energy‐dispersive X‐ray spectrometry, X‐ray diffraction, Fourier transform infrared spectroscopy, and UV–visible spectroscopy showed the coexistence of Ag, Degussa P25 (P25), and graphene and the nanoscale dispersion of nanoparticles in the matrix and on the surface of the polyurethane (PU) foam. The diesel adsorption capacity of the photocatalyst reached 96 g/g. The maximum diesel degradation was found to be 76% in a period of 16 h. Compared with polyurethane‐foam‐supported P25/graphene (PU–P25/G) and polyurethane‐foam‐supported P25 (PU–P25), all of the adsorption isotherm and degradation kinetics followed the order PU–Ag/P25/G > PU–P25/G > PU–P25 > PU; this was due to the loading of different nanoparticles. Moreover, the degradation efficiency was reduced only 5% after five consecutive reactions; this showed good stability and reusability of the photocatalyst for surface water restoration. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43400.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号