首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Garnet-bearing mineral assemblages are commonly observed in pelitic schists regionally metamorphosed to upper greenschist and amphibolite facies conditions. Modelling of thermodynamic data for minerals in the system Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O, however, predicts that garnet should be observed only in rocks of a narrow range of very high Fe/Mg bulk compositions. Traditionally, the nearly ubiquitous presence of garnet in medium- to high-grade pelitic schists is attributed qualitatively to the stabilizing effect of MnO, based on the observed strong partitioning of MnO into garnet relative to other minerals. In order to quantify the dependence of garnet stability on whole-rock MnO content, we have calculated mineral stabilities for pelitic rocks in the system MnO–Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O for a moderate range of MnO contents from a set of non-linear equations that specify mass balance and chemical equilibrium among minerals and fluid. The model pelitic system includes quartz, muscovite. albite, pyrophyllite, chlorite, chloritoid, biotite, garnet, staurolite, cordierite, andalusite, kyanite. sillimanite, K-feldspar and H2O fluid. In the MnO-free system, garnet is restricted to high Fe/Mg bulk compositions, and commonly observed mineral assemblages such as garnet–chlorite and garnet–kyanite are not predicted at any pressure and temperature. In bulk compositions with XMn= Mn/(Fe + Mg + Mn) > 0.01, however, the predicted garnet-bearing mineral assemblages are the same as the sequence of prograde mineral assemblages typically observed in regional metamorphic terranes. Temperatures predicted for the first appearance of garnet in model pelitic schist are also strongly dependent on whole-rock MnO content. The small MnO contents of normal pelitic schists (XMn= 0.01–0.04) are both sufficient and necessary to account for the observed stability of garnet.  相似文献   

2.
The frequency of occurrence of minerals in 1876 samples of Sanbagawa pelitic schist in central Shikoku is summarized on the basis of microscopic observation accompanied, in part, by use of an electron microprobe. All samples contain quartz, plagioclase, phengite, chlorite and graphite. More than 90% of samples contain clinozoisite, titanite and apatite. Garnet is present in 95% of samples from the garnet zone, and biotite is present in 64% of samples from the albite‐biotite zone. Calcite is found in about 40% of samples of the pelitic schist collected from outcrop, but occurs in 95% of the pelitic schist from drill cores. Calcite was apparently ubiquitous in the pelitic schist during the Sanbagawa metamorphism, but must have been dissolved recently by the action of surface or ground water. The mineral assemblages of the Sanbagawa pelitic schist have to be analyzed in the system with excess calcite, quartz, albite (or oligoclase), clinozoisite, graphite and fluid that is composed mainly of H2O, CO2 and CH4. In the presence of calcite, reactions that produce garnet, rutile, oligoclase, biotite and hornblende, some of which define isograds of the metamorphic belt, should be written as mixed volatile equilibria that tend to take place at lower temperature than the dehydration reactions that have been proposed. The presence of calcite in pelitic schist suggests that fluid composition is a variable as important in determining mineral assemblages as pressure and temperature. Thus Ca‐bearing phases must be taken into account to analyze the phase relations of calcite‐bearing pelitic schist, even if CaO content of Sanbagawa pelitic schist is low. As calcite is a common phase, the mineral assemblages of the biotite zone pelitic schist may contravene the mineralogical phase rule and warrant further study.  相似文献   

3.
Several petrographic studies have linked accessory monazite growth in pelitic schist to metamorphic reactions involving major rock‐forming minerals, but little attention has been paid to the control that bulk composition might have on these reactions. In this study we use chemographic projections and pseudosections to argue that discrepant monazite ages from the Mount Barren Group of the Albany–Fraser Orogen, Western Australia, reflect differing bulk compositions. A new Sensitive High‐mass Resolution Ion Microprobe (SHRIMP) U–Pb monazite age of 1027 ± 8 Ma for pelitic schist from the Mount Barren Group contrasts markedly with previously published SHRIMP U–Pb monazite and xenotime ages of c. 1200 Ma for the same area. All dated samples experienced identical metamorphic conditions, but preserve different mineral assemblages due to variable bulk composition. Monazite grains dated at c. 1200 Ma are from relatively magnesian rocks dominated by biotite, kyanite and/or staurolite, whilst c. 1027 Ma grains are from a ferroan rock dominated by garnet and staurolite. The latter monazite population is likely to have grown when staurolite was produced at the expense of garnet and chlorite, but this reaction was not intersected by more magnesian compositions, which are instead dominated by monazite that grew during an earlier, greenschist facies metamorphic event. These results imply that monazite ages from pelitic schist can vary depending on the bulk composition of the host rock. Samples containing both garnet and staurolite are the most likely to yield monazite ages that approximate the timing of peak metamorphism in amphibolite facies terranes. Samples too magnesian to ever grow garnet, or too iron‐rich to undergo garnet breakdown, are likely to yield older monazite, and the age difference can be significant in terranes with a polymetamorphic history.  相似文献   

4.
ABSTRACT Ion probe traverses across garnets from peridotites of the Caledonides of Norway and the Variscides of Poland show zoning patterns for Y, V, Zr, Cr, Ti and the REE. The complexly zoned patterns of garnets from the Bystrzyca Górna peridotite, Poland, are interpreted in terms of a changing P–T history (isobaric cooling followed by decompression and cooling). Weak rimward gradients in REE concentrations in garnets from the Almklovdalen and Sandvika peridotites, Norway, may be relicts of the original growth history of the garnets, but the nearly flat Y, V, Zr, Cr and Ti profiles from the same garnets imply a later period of near-homogenization at uniform P–T. Crushed garnet separates from each body were separated into three or more fractions on the assumption that density and magnetic susceptibility vary with Fe/Mg ratio, and Fe/Mg ratios change from garnet core to rim. Sm-Nd garnet–clinopyroxene ‘ages’ were determined for each fraction to determine whether they are also zoned. Four garnet fractions from the Góry Sowie peridotite give nearly the same ages (397–412 Ma) that are believed to span the interval of garnet growth. Garnet fractions from the Norwegian peridotites define scattered ages (816–1350 Ma) that are suspect, but hint at a Sveconorwegian equilibration event. The data indicate the Variscan and Norwegian peridotites had different histories, despite superficial mineralogical and tectonic similarities. Norwegian garnet peridotites had a long pre-Caledonian history and were extracted from a relatively cold mantle whereas the Variscan garnet peridotites had a comparatively short pre- or Eo-Variscan history and were extracted from a hot mantle.  相似文献   

5.
Garnet porphyroblasts in sillimanite‐bearing pelitic schists contain complex textural and compositional zoning, with considerable variation both within and between adjacent samples. The sillimanite‐bearing schists locally occur in regional Barrovian garnet zone assemblages and are indicative of a persistent lack of equilibrium during prograde metamorphism. Garnet in these Dalradian rocks from the Scottish Highlands preserves evidence of a range of metamorphic responses including initial growth and patchy coupled dissolution–reprecipitation followed by partial dissolution. Individual porphyroblasts each have a unique and variable response to prograde metamorphism and garnet with mainly flat compositional profiles co‐exists with those containing largely unmodified characteristic bell‐shaped Mn profiles. This highlights the need for caution in applying traditional interpretations of effective volume diffusion eliminating compositional variation. Cloudy garnet with abundant fluid inclusions is produced during incomplete modification of the initial porphyroblasts and these porous garnet are then particularly prone to partial replacement in sillimanite‐producing reactions. The modification of garnet via a dissolution–reprecipitation process releases Ca into the effective whole‐rock composition, displacing the pressure–temperature positions of subsequent isograd reactions. This represents the first report of internal metasomatism controlling reaction pathways. The behaviour of garnet highlights the importance of kinetic factors, especially deformation and fluids, in controlling reaction progress and how the resulting variability influences subsequent prograde history. The lack of a consistent metamorphic response, within and between adjacent schists, suggests that on both local and regional scales these rocks have largely not equilibrated at peak metamorphic conditions.  相似文献   

6.
X‐ray composition maps and quantitative analyses for Mn, Ca and Cr have been made for six pelitic and calc‐pelitic garnet crystals and Al, Fe and Cr analyses maps have been made for two kyanite crystals, from lower and mid/upper amphibolite facies rocks from the Grenville Province of western Labrador, using an electron microprobe analyser and a laser ablation ICP‐MS. Garnet with spiral (‘snowball’) internal fabrics (Si) has spiral zoning in major elements, implying that growth was concentrated in discrete regions of the crystal at any one time (spiral zoning). Cr zoning is parallel to Si in low amphibolite facies garnet with both straight and spiral internal fabrics, indicating that the garnet overprinted a fabric defined by Cr‐rich (mica±chlorite±epidote) and Cr‐poor (quartz±plagioclase) layers during growth (overprint zoning) and that Cr was effectively immobile. In contrast, in mid/upper amphibolite facies garnet porphyroblasts lacking Si, Cr zoning is concentric, implying that Cr diffusion occurred. Cr zoning in kyanite porphyroblasts appears superficially similar to oscillatory zoning, with up to three or four annuli of Cr enrichment and/or depletion present in a single grain. However, the variable width, continuity, Cr concentration and local bifurcation of individual annuli suggest that an origin by overprint zoning may be more likely. The results of this study explain previously observed nonsystematic Cr zoning in garnet and irregular partitioning of Cr between coexisting metamorphic mineral pairs. In addition, this study points to the important role of crystal growth rate in determining the presence or absence of inclusions and the type of zoning exhibited by both major and trace elements. During fast growth, inclusions are preferentially incorporated into the growing porphyroblast and slow diffusing elements such as Cr are effectively immobile, whereas during slow growth, inclusions are not generally included in the porphyroblast and Cr zoning is concentric.  相似文献   

7.
Abstract An outcrop of staurolite-bearing pelitic schist from the Solitude Range in the south-western Rocky Mountains, British Columbia, was examined in order to determine the nature of prograde garnet- and staurolite-producing reactions using information from garnet zoning and inclusion mineralogy. Although not present as a matrix phase, chloritoid is present as inclusions in garnet and is interpreted to have participated in the simultaneous growth of garnet and staurolite by a reaction such as chloritoid + quartz = garnet + staurolite + H2O.
A garnet zoning trend reversal, which is most pronounced with respect to almandine and grossular components, is present in the outer core of garnets. The location of the zoning reversal corresponds to the outer limit of chloritoid inclusions in garnet. As there is no evidence for polymetamorphism, the zoning reversal is interpreted to indicate continued garnet growth by prograde reaction(s) during a single metamorphic event after the exhaustion of chloritoid as a matrix phase.
Metamorphic conditions recorded by mineral rim compositions are 550–600° C at 6–7 kbar. Because there is no evidence for partial resorption of garnet during production of staurolite, we interpret these results to represent peak conditions.  相似文献   

8.
Porphyroblasts of garnet and plagioclase in the Otago schists have not rotated relative to geographic coordinates during non-coaxial deformation that post-dates their growth. Inclusion trails in most of the porphyroblasts are oriented near-vertical and near-horizontal, and the strike of near-vertical inclusion trails is consistent over 3000 km2. Microstructural relationships indicate that the porphyroblasts grew in zones of progressive shortening strain, and that the sense of shear affecting the geometry of porphyroblast inclusion trails on the long limbs of folds is the same as the bulk sense of displacement of fold closures. This is contrary to the sense of shear inferred when porphyroblasts are interpreted as having rotated during folding.
Several crenulation cleavage/fold models have previously been developed to accommodate the apparent sense of rotation of porphyroblasts that grew during folding. In the light of accumulating evidence that porphyroblasts do not generally rotate, the applicability of these models to deformed rocks is questionable.
Whether or not porphyroblasts rotate depends on how deformation is partitioned. Lack of rotation requires that progressive shearing strain (rotational deformation) be partitioned around rigid heterogeneities, such as porphyroblasts, which occupy zones of progressive shortening or no strain (non-rotational deformation). Therefore, processes operating at the porphyroblast/matrix boundary are important considerations. Five qualitative models are presented that accommodate stress and strain energy at the boundary without rotating the porphyroblast: (a) a thin layer of fluid at the porphyroblast boundary; (2) grain-boundary sliding; (3) a locked porphyroblast/matrix boundary; (4) dissolution at the porphyroblast/matrix boundary, and (5) an ellipsoidal porphyroblast/shadow unit.  相似文献   

9.
In principle, garnet growth rates may be calculated from 87Rb/86Sr and 87Sr/86Sr measurements in garnet subsamples and the surrounding rock matrix. Because of low Rb/Sr, garnet should passively record the matrix decay of 87Rb to 87Sr as a progressive increase in 87Sr/86Sr from core to rim. This concept was tested by collecting Rb‐Sr data for five garnet grains from four major orogenic belts: eastern Vermont (c. 380 Ma), western New Hampshire (c. 320 Ma), southern Chile (c. 75 Ma) and northwestern Italy (c. 35 Ma). Both normal Sr isotope zoning (increasing 87Sr/86Sr from core to rim) and inverse Sr zoning (decreasing 87Sr/86Sr from core to rim) were observed. Garnet and matrix isotope data commonly yielded grossly inaccurate model ages. Incomplete Rb and Sr equilibration among matrix minerals is invoked to explain the deviations between theoretical v. measured zoning patterns and the age disparities. Initially, the reactive matrix is dominated by rapidly equilibrating Rb‐rich mica, which imparts high 87Sr/86Sr values in garnet cores. Progressive participation of slower equilibrating Sr‐rich plagioclase buffers or even reduces 87Sr/86Sr, possibly leading to flat or decreasing 87Sr/86Sr from garnet cores to rims. Unusually high 87Sr/86Sr in garnet in combination with bulk matrix compositions causes erroneously young apparent ages, so metamorphic ages, growth rates, and associated heating and loading rates are likely suspect. Although Rb‐Sr may be the most susceptible because of the profound disparities between mica and feldspar, zircon reactivity might influence the Lu‐Hf system by up to a few per cent. The Sm‐Nd system seems generally immune to these effects. Pseudosection analysis and conventional garnet geochronology, which presume complete matrix equilibration during metamorphism, may require modification to account for differences between whole‐rock v. reactive matrix compositions.  相似文献   

10.
Polyphase deformation and metamorphism of pelitic schists of Chorbaoli Formation of Sausar Group in and around Ramtek area, Nagpur district, Maharashtra, India has led to the development of garnet and sataurolite porphyroblasts in a predominantly quartz-mica matrix. Microstructural study of oriented thin sections of these rocks shows that garnet and staurolite have different growth histories and these porphyroblasts share a complex relationship with the matrix. Garnet shows at least two phases of growth — first intertectonic between D1 and D2 (pre-D2 phase) and then syn-tectonic to post-tectonic with respect to D2 deformation. Growth of later phase of garnet on the earlier (pre-D2) garnet grains has led to the discordance of quartz inclusion trails between core and rim portion of the same garnet grain. Staurolite develops only syn-D2 and shows close association with garnet of the later phase. The peak metamorphic temperature thus coincided with D2 deformation, which developed the dominant crenulation schistosity (S2), regionally persistent in the terrain. The metamorphic grade reached up to middle amphibolite facies in the study area, which is higher than the adjoining southern parts of Sausar Fold Belt.  相似文献   

11.
A mid‐ocean ridge basalt (MORB)‐type eclogite from the Moldanubian domain in the Bohemian Massif retains evidence of its prograde path in the form of inclusions of hornblende, plagioclase, clinopyroxene, titanite, ilmenite and rutile preserved in zoned garnet. Prograde zoning involves a flat grossular core followed by a grossular spike and decrease at the rim, whereas Fe/(Fe + Mg) is also flat in the core and then decreases at the rim. In a pseudosection for H2O‐saturated conditions, garnet with such a zoning grows along an isothermal burial path at c. 750 °C from 10 kbar in the assemblage plagioclase‐hornblende‐diopsidic clinopyroxene‐quartz, then in hornblende‐diopsidic clinopyroxene‐quartz, and ends its growth at 17–18 kbar. From this point, there is no pseudosection‐based information on further increase in pressure or temperature. Then, with garnet‐clinopyroxene thermometry, the focus is on the dependence on, and the uncertainties stemming from the unknown Fe3+ content in clinopyroxene. Assuming no Fe3+ in the clinopyroxene gives a serious and unwarranted upward bias to calculated temperatures. A Fe3+‐contributed uncertainty of ±40 °C combined with a calibration and other uncertainties gives a peak temperature of 760 ± 90 °C at 18 kbar, consistent with no further heating following burial to eclogite facies conditions. Further pseudosection modelling suggests that decompression to c. 12 kbar occurred essentially isothermally from the metamorphic peak under H2O‐undersaturated conditions (c. 1.3 mol.% H2O) that allowed the preservation of the majority of garnet with symplectitic as well as relict clinopyroxene. The modelling also shows that a MORB‐type eclogite decompressed to c. 8 kbar ends as an amphibolite if it is H2O saturated, but if it is H2O‐undersaturated it contains assemblages with orthopyroxene. Increasing H2O undersaturation causes an earlier transition to SiO2 undersaturation on decompression, leading to the appearance of spinel‐bearing assemblages. Granulite facies‐looking overprints of eclogites may develop at amphibolite facies conditions.  相似文献   

12.
Garnet–biotite–(sillimanite) gneiss (~700 °C, 7 kbar) of the Otter Lake area in the Western Grenville Province (Canadian Shield) occurs as granitic gneiss (group 4) that forms a large part of the Otter Complex, and as widely distributed, more heterogenous metasedimentary gneiss (group 2). In one sample of group 4 gneiss (Qtz25 Pl34 Kfs28 Bt10 Grt2.5 Sil1) the true diameter (determined by serial grinding) of subhedral garnet crystals ranges from 0.2 to 3.0 mm, with a mode at 1.0 mm. Nearest‐neighbour measurements in this sample, and in surfaces of nine additional samples (all <5% garnet) confirm that garnet crystals are distributed mainly at random; slight clustering was detected in two samples. In one sample of group 4 gneiss, microprobe analyses on sections through crystal centres (obtained by serial slicing), reveal that small crystals and margins to large crystals contain more Fe and Mn and less Mg than the broad central regions of large crystals. Based on these and previous results, together with theoretical considerations, a crystallization model is proposed, in which, (i) garnet was produced by the continuous reaction, Ms + Bt + Qtz → Grt + Kfs + H2O, (ii) nucleation occurred by the random selection of randomly distributed Ms–Bt–Qtz triple junctions, (iii) the rate of linear growth remained constant, and (iv) as temperature increased, the rate of nucleation first increased slowly, then remained nearly constant, and finally declined. Within‐population compositional homogenization was followed, on cooling, by local Fe–Mg–Mn exchange with biotite.  相似文献   

13.
Quantitative PT path determination in metamorphic rocks is commonly based on the variation in composition of growth‐zoned garnet. However, some component of growth zoning in garnet is necessarily the result of an effective bulk composition change within the rock that has been generated by crystal fractionation of components into the core of garnet. Therefore, any quantitative calculation of the PT regime of garnet growth should be completed using an accurate assessment of the composition of the chemical system from which garnet is growing. Consequently, a method for calculating the extent of crystal fractionation that provides a means of estimating the composition of the unfractionated rock at any stage during garnet growth is developed. The method presented here applies a Rayleigh fractionation model based on measured Mn content of garnet to generate composition v. modal proportion curves for garnet, and uses those curves to estimate the vectors of crystal fractionation. The technique is tested by calculating the precision of the equilibrium between three garnet compositional variables within the chemical system determined to be appropriate for each of a series of microprobe analyses from garnet. Application of the fractionation calculations in conjunction with the PT estimates based on intersecting compositional isopleths provides a means of calculating PT conditions of garnet growth that is based on individual point‐analyses on a garnet grain. Such spatially precise and easily obtainable PT data allow for detailed parallel studies of the microstructural, the PT, and the chemical evolution of metamorphosed pelites. This method provides a means of studying the dynamics of orogenic systems at a resolution that was previously unattainable.  相似文献   

14.
Serial sectioning and imaging with a flatbed scanner yielded the three-dimensional size and spatial distribution of garnet porphyroblasts in two garnet schists and one staurolite-bearing schist from the Everett Formation, north-west Connecticut. The dominant garnet-producing reaction in all samples was chlorite+quartz=garnet+H2O. The appearance of staurolite, and additional garnet growth in the staurolite-bearing sample, was due to the reaction chloritoid=garnet+staurolite+chlorite. Statistical measures of garnet spatial distributions, using the pair correlation function (PCF), indicate that garnet crystals are weakly to strongly clustered at length scales between 2 and 10 mm. Such clustered nucleation may reflect minor bulk compositional variations. Covariance measures between garnet size and nearest-neighbour distance, using the mark covariance function (MCF), suggest a very weak correlation between crystal size and nearest-neighbour distance for length scales of 2 mm or less. These statistical data suggest that if diffusional gradients were present around growing garnet crystals, they did not influence nucleation and growth patterns at length scales greater than c. 2 mm. Compositional maps, through the garnet centres, show that the smaller crystals have lower Mn core compositions relative to larger crystals, consistent with progressive nucleation during pro-grade metamorphism. Radius-rate plots calculated from compositional X-ray maps show similar growth rates for garnet crystals of different size, consistent with an interface-controlled growth model for garnet. The presence of minor diffusional gradients around growing garnet cannot be entirely dismissed, but the lack of observable reaction rims, the clustered spatial distribution and the radius-rate data are most consistent with an interface-controlled garnet growth model.  相似文献   

15.
Abstract Mg–Fe carpholite is widespread in the Diahot region of New Caledonia in highly aluminous schists and as veins in what was originally a clay-rich hydrothermal alteration envelope about massive suphide deposits. These carpholites have Fe/(Fe + Mg) ratios of 0.03–0.65 and no significant Mn component. Mg-carpholite + quartz occur in assemblages with chlorite or pyrophyllite, pyrophyllite + kaolinite and pyrophyllite + diaspore. Temperatures of 230–320° C and minimum pressures of 7 kbar are indicated for the Mg–Fe carpholite-bearing rocks. The regional distribution of aragonite and Mg–Fe carpholite parallel to a major zone of dominantly transcurrent movement and oblique to the trend of the subduction complex indicates the high- P /low- T schists owe their rapid uplift and preservation to the vertical component of the transcurrent faulting.  相似文献   

16.
Within an analysed garnet porphyroblast, opaque inclusions imaged with the backscatter facility of a scanning electron microscope show different microtextures depending on their position within the porphyroblast. Three different zones can been distinguished: Zone 1 contains a Ti‐rich magnetite that has decomposed to a symplectite of fine and narrowly spaced exsolution lamellae of ilmenite and magnetite. Zone 2 shows a Ti‐rich magnetite symplectite with thicker and more widely spaced exsolution lamellae of ilmenite and magnetite. Within zone 3, Ti‐rich magnetite symplectite has totally been replaced by recrystallized magnetite crystals bordered by a thin ilmenite rim. Similar microtextures within ulvöspinel‐rich magnetite have elsewhere shown to be the result of an increase in oxidation and rate of diffusion. During metamorphism of metapelites, such an increase can be reasonably envisaged because of dehydration reactions progressing during rising temperatures, and this has occurred during the overgrowth of the three different microtextures by the garnet porphyroblast. Because the microtextures are homogeneous within the three different zones, it is deduced that the oxidation reaction rate of the opaque inclusions was substantially lower than the garnet growth rate. As a consequence, hiatuses in the garnet growth history must have occurred between the evolution from one microtexture to the next. A comparison between the inclusion trail geometry and the microtextural zone boundaries shows a perfect coincidence between these and the sites where inclusion trails become strongly deflected and truncated. This correlation confirms that, in the studied case, sharp microstructural boundaries (as truncation zones or deflection zones) coincide with growth hiatuses. The study therefore highlights the potential use of opaque inclusions to confirm or reject the occurrence of growth hiatuses within garnet porphyroblasts, especially in cases where discontinuities in the inclusion trail patterns are otherwise arbitrarily associated with growth hiatuses.  相似文献   

17.
Garnet crystals from low-pressure/high-temperature (LPHT) Ryoke metamorphic rocks in the Yanai district, south-western Japan, show several kinds of chemical zoning patterns that systematically vary with grain radius between c . 0.1 and 0.5  mm. Large grains (> c . 0.4  mm) show normal zoning and small grains (< c . 0.4  mm) show unzoned or reversely zoned cores. Observations of the chemical zoning and of the spatial and size distributions of the garnet grains between c . 0.1 and 0.5  mm in radius suggest that they were formed by continuous nucleation and diffusion-controlled growth.
A previously estimated temperature–time path ( T  – t path) for the Ryoke metamorphism, using 1-D numerical simulation, is characterized by a rapid increase in temperature, 0.0017  °C yr−1 on average, and a period of high temperature (>600  °C) shorter than 0.5 Myr, which was presumably caused by the intrusion of a granodiorite sheet. Chemical zoning of garnet grains with different radii simulated for the T  – t path using a numerical model of continuous nucleation and diffusion-controlled growth, in combination with intracrystalline diffusion, compares well with the observed zoning patterns in garnet grains with different radii. This is in spite of the fact that the simulated zoning patterns vary greatly, depending on subtle differences in the T–t history. Therefore, they suggest that the T–t path gives a good explanation for the LPHT Ryoke metamorphism. Although this study only refers to the Ryoke metamorphism, the technique may be applicable to thermal modelling of other metamorphic terranes.  相似文献   

18.
A garnet population in Yellowknife schist, Canada   总被引:6,自引:0,他引:6  
Abstract Data are presented on a garnet population in a specimen of garnet-biotite-plagioclase-quartz schist from the cordierite zone of an Archaean thermal dome in the Southern Slave Province of the Canadian Shield. Garnet crystals are bounded by planar dodecahedral faces and by trapezohedral faces which on the 10-μm scale are corrugated. Crystal distribution, as revealed by dissection of a small cubic volume of rock, is random. The size distribution is normal, with a mean diameter of 0.81 mm and a standard deviation of 0.32 mm. In the largest crystal of the population (mean radius 0.83 mm), [Mn] = 100 Mn/(Fe + Mg + Mn + Ca) decreases from 14.5 at the centre to 7.5 and then increases in the outer margin to 8.5; [Fe] increases continuously from 67 at the centre to 77 at the surface; [Mg] increases from 12.5 to 13.5 and then falls sharply to 11; [Ca] remains unchanged at 4.0 and then drops to 3.3. Progressively smaller crystals have progressively lower [Mn] and higher [Fe] concentrations at their centres, while all crystals have the same margin composition. Growth vectors extending from given concentration contours to crystal surfaces are of equal length regardless of the size of the crystal in which the vector is located. A garnet-forming model is presented in which reaction was initiated by a rise in temperature. Nucleation sites were randomly selected. The nucleation rate increased with time and then declined. Crystal faces advanced at a constant linear rate, which implies an increase in volume proportional to surface area. Initially, the composition of garnet deposited on crystal surfaces was determined by van Laar equations of equilibrium, which demanded the withdrawal of Mn and Fe from within chlorite crystals. This transfer reaction was then accompanied by an ion exchange reaction which moved Mn and Fe to garnet surfaces from biotite, in exchange for Mg. The exchange reaction provides an explanation for the high overall concentration of Mn and Fe in garnet and for the observed Mn and Mg reversals in the margins of crystals. The increase of garnet volume in the garnet population is found to be parabolic, i.e. Vαα5.  相似文献   

19.
Porphyroblastic garnet schists from northern Samos contain in their matrix the assemblage Ca‐rich garnet + phengite + paragonite ± chloritoid equilibrated at ~530 °C and ~19 kbar during early Tertiary metamorphism. These high‐pressure/low‐temperature (HP‐LT) metapelitic rocks also exhibit mineralogical and microstructural evidence of an older, higher temperature metamorphism. Large, centimetre‐sized Fe‐rich garnet showing growth zoning developed discontinuous, <0.5 mm thick, Ca‐rich and Mn‐poor overgrowths, compositionally matching small (<1 mm) high‐P matrix garnet. Because the discontinuous garnet rims are in textural and chemical equilibrium with Alpine high‐P minerals, the central parts of the garnet porphyroblasts were found to have formed prior to the Tertiary metamorphism. This is supported by electron microprobe U‐Th‐Pb dating of monazite inclusions yielding partly reset Variscan ages between 360 and 160 Ma. Monazite‐xenotime and garnet‐muscovite thermometry applied to inclusions in the pre‐Alpine garnet yielded temperatures of 600–625 °C (at 3–8 kbar). Prismatic Al‐rich pseudomorphs, possibly after kyanite/sillimanite, and inclusions in garnet composed of white K‐Na mica + quartz ± albite ± K feldspar, interpreted as possible replacements of an intermediate K‐Na feldspar, further support Variscan amphibolite facies conditions. The Samos metapelites thus experienced higher temperatures during the Variscan than during Alpine metamorphism. Diffusional relaxation was very limited between pre‐Alpine garnet and Alpine garnet; both were filled with Alpine garnet along overgrowths and fractures. Fluid‐mediated intergranular element transport, enhanced by deformation, appears crucial in transforming the Variscan garnet into a grossular richer composition during Alpine subduction‐zone metamorphism. At such conditions, dissolution–reprecipitation appears to be a much more effective mechanism for modifying garnet compositions than diffusion. Amphibolite facies conditions are typical for Variscan basement relics exposed in central Cycladic and Dodecanese islands as well as in eastern Crete. The Samos metapelites studied comprise a north‐eastern extension of these basement occurrences.  相似文献   

20.
Regularly oriented orthopyroxene (opx) and forsterite (fo) inclusions occur as opx + rutile (rt) or fo + rt inclusion domains in garnet (grt) from Otrøy peridotite. Electron diffraction characterization shows that forsterite inclusions do not have any specific crystallographic orientation relationships (COR) with the garnet host. In contrast, orthopyroxene inclusions have two sets of COR, that is, COR‐I: <111>grt//<001>opx and {110}grt~//~{100}opx (~13° off) and COR‐II: <111>grt//<011>opx and {110}grt~//~{100}opx (~14° off), in four garnet grains analysed. Both variants of orthopyroxene have a blade‐like habit with one pair of broad crystal faces parallel/sub‐parallel to {110}grt plane and the long axis of the crystal, <001>opx for COR‐I and <011>opx for COR‐II, along <111>grt direction. Whereas the lack of specific COR between forsterite and garnet, along with the presence of abundant infiltrating trails/veinlets decorated by fo + rt at garnet edges, provide compelling evidence for the formation of forsterite inclusions in garnet through the sequential cleaving–infiltrating–precipitating–healing process at low temperatures, the origin of the epitaxial orthopyroxene inclusions in garnet is not so obvious. In this connection, the reported COR, the crystal habit and the crystal growth energetics of the exsolved orthopyroxene in relict majoritic garnet were reviewed/clarified. The exsolved orthopyroxene in a relict majoritic garnet follows COR‐III: {112}grt//{100}opx and <111>grt//<001>opx. Based on the detailed trace analysis on published SEM images, these exsolved orthopyroxene inclusions are shown to have the crystal habit with one pair of broad crystal faces parallel to {112}grt//{100}opx and the long crystal axis along <111>grt//<001>opx. Such a crystal habit can be rationalized by the differences in oxygen sub‐lattices of both structures and represents the energetically favoured crystal shape of orthopyroxene inclusions in garnet formed by solid‐state exsolution mechanism. Considering the very different COR, crystal habit, as well as crystal growth direction, the orthopyroxene inclusions in garnet of the present sample most likely had been formed by mechanism(s) other than solid‐state exsolution, regardless of their regularly oriented appearance in garnet and the COR specification between orthopyroxene and garnet. In fact, the crystallographic characteristics of orthopyroxene and the similar chemical compositions of garnet at opx + rt inclusion domains, fo + rt inclusion domains/trails and garnet rim suggest that the orthopyroxene inclusions in the garnet are most likely formed by similar cleaving‐infiltration process as forsterite inclusions, though probably at an earlier stage of metamorphism. This work demonstrates that the oriented inclusions in host minerals, with or without specific COR, can arise from mechanism(s) other than solid‐state exsolution. Caution is thus needed in the interpretation of such COR, so that an erroneous identification of exhumation from UHP depths would not be made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号