首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
基于高光谱的土壤有机质含量估算研究   总被引:21,自引:0,他引:21  
高光谱遥感技术以其光谱分辨率高、波段连续性强、数据丰富的特点,因而在土壤养分研究中得到广泛应用.通过土壤钉机质的高光谱遥感分析,可以充分了解土壤养分的状况及动态变化,为指导农业生产及保护农业生态环境提供科学依据.本文基于江西省余江县和泰和县采集的34个红壤土样350~2 500 nm波段的光谱曲线,研究了土壤光谱与土壤有机质含量之间的关系.先对土壤反射率光谱进行两种变换:一阶微分(R')、倒数的对数log(1/R),然后在提取特征吸收波段的基础上,运用多元逐步线性回归法和偏最小二乘回归法建立相应的估算模型,并对模型进行检验.结果表明,偏最小二乘回归法优于多元逐步线性回归法,其建立的高光谱估算模型具有快速估算土壤中有机质含量的潜力.  相似文献   

2.
土壤主要养分近红外光谱分析及其测量系统   总被引:1,自引:0,他引:1  
土壤是农业生产的基础,采用近红外光谱技术实现对土壤养分的快速分析,研制分立波长型近红外土壤养分测量系统,指导农业生产过程,有助于改变现有农业生产的粗放经营状态.首先,使用FOSSXDS近红外光谱分析仪对85份东北土壤样品采集光谱,采用相关系数谱及连续投影法等化学计量学算法分析土壤的近红外光谱,并优选出总氮和有机质的特征...  相似文献   

3.
改进偏最小二乘法在近红外牛奶成分测量中的应用   总被引:4,自引:0,他引:4  
采用NicoletNexus870红外-近红外傅里叶变换光谱仪测量了36个市售巴氏杀菌纯牛乳样品的透射光谱。在近红外光谱1254~1875nm和2045~2372nm波段内,为了选择携带信息量大的波长区域,采用改进偏最小二乘回归法,包括间隔偏最小二乘法、移动窗口偏最小二乘法和可变窗宽移动窗口偏最小二乘法对巴氏杀菌纯牛乳中脂肪、蛋白质及乳糖成分分别建立模型,进行了分析和比较,结果表明,采用改进偏最小二乘法所选出的波长区与目标值的相关程度高,可以较好地建立牛奶的预测模型。  相似文献   

4.
基于北京市通州、顺义两区52个潮土样品高光谱数据,利用离散小波多尺度分析技术对其进行处理分析。首先将光谱按六种尺度进行分解,然后将各尺度分解数据与土壤有机质含量进行相关性分析,并筛选敏感波段,最后利用偏最小二乘法构建土壤有机质含量估测模型。结果表明:土壤光谱反射率经小波变换后,在参与建模的特征波段中,近红外波段居多,即近红外波段估测有机质含量的贡献高于可见光波段;低频信息对有机质含量的估测能力优于高频信息;高频信息对土壤有机质含量的估测精度随光谱分辨率降低而降低;与常用光谱变换算法相比,小波变换分析法在一定程度上提高了土壤光谱对有机质含量的估测能力,其低频信息与高频信息构建的最优模型预测精度均较高,低频信息的R2=0.722,RMSE=0.221,高频信息的R2=0.670,RMSE=0.255。  相似文献   

5.
SPA-LS-SVM检测土壤有机质和速效钾研究   总被引:1,自引:0,他引:1  
应用可见/短波近红外光谱分析测量土壤有机质和速效钾含量。光谱预处理包括平滑,标准归一化,多元散射校正和平滑结合一阶导数,以消除系统噪声和外部干扰,分别应用偏最小二乘和最小二乘支持向量机方法建立校正模型,模型的输入为基于连续投影算法得到的特征波长。比较显示基于连续投影算法得到的特征波长为输入的最小二乘支持向量机优于偏最小二乘法建模。模型评价指标由相关系数和预测均方误差表示。有机质的相关系数和预测均方误差分别0.860 2和2.98,速效钾为0.730 5和15.78。表明基于连续投影算法可见/短波近红外光谱利用最小二乘支持向量机建模,可以作为一个精确的土壤有机质和速效钾的测定方法。  相似文献   

6.
近红外光谱技术结合RCA和SPA方法检测土壤总氮研究   总被引:1,自引:0,他引:1  
基于近红外光谱技术结合连续投影算法和回归系数分析对检测土壤总氮含量进行研究。采集农田土壤样本近红外光谱数据,土壤样本数量共394个。由于原始光谱数据量大,在500~2 500 nm光谱波长范围基础上,为简化模型,在原始光谱基础上采用连续投影算法和回归系数分析提取特征变量,以两种变量选择方法提取的特征变量作为输入,分别采用偏最小二乘回归(PLS)、 多元线性回归(MLR)和最小二乘支持向量机(LS-SVM)建模方法建立总氮预测模型,共建立了9个预测模型,最优预测集的决定系数为0.81,剩余预测偏差RPD为2.26。研究表明,基于连续投影算法和回归系数分析选择的特征波长可以应用于近红外光谱检测土壤总氮含量,同时可以大大简化模型,适合开发便携式土壤养分检测仪。  相似文献   

7.
土壤有机质(SOM)是植物生长必需的营养物质,也是土壤属性检测的重要参数。快速、高效地获取土壤有机质信息对精细农业的发展具有重要意义。近红外光谱技术具有快捷、低成本等优势,被广泛应用到土壤有机质的测量中,然而土壤水分在近红外光谱(780~2 500 nm)中具有很强的吸收特性,对土壤有机质的检测形成了一定的干扰。分析了50个土样在不同含水率(约17%,15%,10%,5%和干土)下的近红外吸光度谱图特性,利用水分敏感波段2 210, 1 415和1 929 nm构建了水分修正系数(MDI),并在此基础上对不同含水率土样进行了重构,以消除水分对土壤有机质预测模型的影响。结果如下:(1)经MDI校正重构后的吸光度谱图与对应的干土土样吸光度谱图相近,能较好地反映其干土土样的吸光度谱图特性。(2)采用偏最小二乘(PLS)法建立了干土土样的有机质定量预测模型,并对重构后的不同含水率土样进行了预测,其统计参数分别为:预测相关系数(RP)0.90,预测标准误差(SEP)0.802和预测均方根误差(RMSEP)1.09;与原始未经MDI校正的预测结果相比,相关系数上升了0.032,预测标准误差降低了0.113,预测均方根误差降低了0.25。结果表明,本研究提出的水分校正算法可以降低水分对土壤有机质预测的干扰,提高利用干土土样有机质定量预测模型预测不同含水率土样的精度,可为基于近红外光谱技术的土壤有机质实时测定技术的推广提供理论依据。  相似文献   

8.
近红外光谱是一种快速、无损的定量分析工具。为了提高黄酒关键参数的检测水平,采用近红外光谱法进行定量分析。检测过程中,由于受环境波动、仪器老化、原料变化等因素的影响,基于旧样品所建的模型的精确度逐渐下降。为保持模型的预测精度,引入递归偏最小二乘(recursive partial least square, RPLS)对模型进行更新。以往此方法多使用全谱信息扩充建模集并进行递归计算,光谱的变量多,且包含环境影响等干扰信息,更新计算量大,且精度的提升效果不明显。考虑到黄酒生产过程中特征波段变化小的特性,提出了一种基于特征波段的黄酒近红外光谱检测模型递归更新方法。先采用相关系数法提取特征波段建立低维模型,在采集到新样品理化值后,再利用其特征波段光谱信息,使用递归偏最小二乘对低维模型进行更新。此方法被应用于黄酒总酸的近红外检测模型更新。模型评价使用相关系数r,预测标准偏差RMSEP和预测相对分析误差RPD三个指标。结果表明:采用本方法后,模型稳定性显著优化,计算效率有所提升,模型预测效果良好,三个评价指标分别达到0.965 7,0.184 3和3.736 2,较全谱PRLS时分别提高3%,24%和31%,在实际应用中有一定的参考价值。  相似文献   

9.
不同粒径对土壤有机质含量可见—近红外光谱预测的影响   总被引:1,自引:0,他引:1  
土壤有机质(SOM)是表征土壤肥力的重要指标,实现其快速准确检测可为精准农业区域管理提供有效的数据支撑。土壤粒径对SOM 的光谱预测及仪器开发有很大的影响,为了明确不同粒径对 SOM 预测的影响,分别制备了1~2,0.5~1,0.25~0.5,0.1~0.25和<0.1mm 五种均匀粒径及<1mm 混合粒径共计6种粒径土样并进行了可见-近红外(300~2 500nm)光谱数据采集。采用蒙特卡罗交叉验证分别剔除了不同粒径的异常样本,结合Savitzky-Golay卷积平滑法对光谱数据进行平滑去噪处理,比较了不同粒径样品的光谱反射率差异,并对平滑后的原始光谱 R进行倒数IR、对数 LR、一阶导数 FDR等3种光谱变换并分析与SOM 含量的相关性,基于竞争性自适应重加权算法(CARS)对光谱数据进行了特征波长提取,并结合偏最小二乘回归(PLSR)分别建立了相应的SOM 含量预测模型。结果表明,不同粒径土样的平均光谱反射率与变异系数随着粒径的减小逐渐增加,且在大于540nm 波长范围内,差异明显。随着粒径的减小,SOM含量与光谱反射率在全波段范围的相关性变化幅度愈加明显,FDR 变...  相似文献   

10.
PCA和SPA的近红外光谱识别白菜种子品种研究   总被引:2,自引:0,他引:2  
为了实现对不同品种白菜种子的快速无损鉴别,应用近红外光谱技术获取白菜种子的光谱反射率,首先采用变量标准化校正和多元散射校正对原始光谱进行预处理;其次,采用主成分分析法(PCA)对光谱数据进行聚类分析,从定性分析的角度得到三种不同白菜种子的特征差异,并采用连续投影算法(SPA)选取特征波长;最后,分别基于全波段光谱、PCA分析得到的前3个主成分变量以及SPA算法选取的特征波长,建立了最小二乘支持向量机(LS-SVM)和偏最小二乘判别(PLS-DA)模型进行白菜种子不同品种的鉴别。从主成分PC1、PC2得分图中可以看出,主成分1和2对不同种类白菜种子具有很好的聚类作用。基于特征波长建立的PLS-DA和LS-SVM模型的判别结果优于基于主成分变量建立的模型,其中基于特征波长建立的LS-SVM模型识别效果最优,建模集和预测集的品种识别率均达到100%。结果表明,通过SPA算法选取的6个特征波长变量能够很好的反映光谱信息,提出的SPA算法结合LS-SVM预测模型能获得满意的分类结果,为白菜种子品种的识别提供了一种新方法。  相似文献   

11.
提出了利用可见/近红外高光谱成像技术检测高温障碍胁迫下番茄叶片色差的方法。首先采集380~1 023 nm波段范围内60个高温障碍胁迫和60个健康番茄叶片的高光谱图像,同时获取全部叶片的色差值(L*, a*b*),然后提取所有样本的高光谱图像中感兴趣区域(region of interest, ROI)的光谱反射率值。基于不同预处理方法建立偏最小二乘(partial least squares, PLS)预测模型,再利用连续投影算法(successive projections algorithm, SPA)提取特征波长并建立SPA-PLS预测模型。最后分别基于全波段和特征波段建立偏最小二乘-判别分析(partial least squares-discriminant analysis, PLS-DA)模型。结果显示,全波段中基于原始光谱信息建立的模型效果最好,3个色差值的预测集决定系数(determination coefficient, R2)分别是0.818,0.109和0.896;基于特征波长建立的模型预测集R2分别是0.591,0.244和0.673;所有模型预测集的总体识别率均大于77.50%。结果表明,可见/近红外高光谱成像技术检测番茄叶片色差值(L*和b*)和识别高温障碍样本是可行的。  相似文献   

12.
研究了基于可见-近红外光谱技术的发动机润滑油含水量快速检测方法。在获取光谱信息的基础上,提出了采用不同的光谱建模方法以提高检测精度和简化分析计算。分别采用主成分分析(PCA)和连续投影算法(SPA)方法进行模型输入变量的提取。SPA最终选择了476,483,544,925,933,938,952,970和974nm共9个波长为最优变量。基于SPA选择的变量,分别应用偏最小二乘回归(PLSR)和多元线性回归(MLR)建模。效果均优于全波段PLSR模型和PCA-PLSR模型。说明SPA选择的有效变量能够包含最重要的全波段光谱信息,同时可以去除无用的信息变量。为了进一步提高检测效果,采用LS-SVM分别基于SPA选择后的有效变量和全波段光谱进行建模。两个模型的预测确定系数(Rp2)均在0.9以上。SPA-LS-SVM的效果要优于全波段LS-SVM模型的效果。SPA-LS-SVM模型的Rp2达到了0.983,剩余预测偏差(RPD)值为6.963。表明可见-近红外光谱可以用于发动机润滑油含水量的检测。  相似文献   

13.
可见-近红外光谱的土壤养分快速检测   总被引:1,自引:0,他引:1  
在测定土壤养分中,可见-近红外光谱技术具有很大的应用空间。该研究探讨了基于可见-近红外光谱(250~950nm)离线、快速测定土壤总氮(TN)、总磷(TP)、总钾(TK)、总碳(TC)等土壤养分的方法及应用。采集青岛三个不同地区土壤样品(异质性较高的山地土壤与河畔土壤)各60份,总计180份,并测定其TN,TP,TK,TC含量及其可见-近红外反射光谱,利用Kennard-Stone法按2∶1比例划分校正集和检验集,采用遗传算法分别提取TN,TP,TK,TC特征波长,以偏最小二乘法建立定量分析模型。TN,TP,TK,TC含量所建光谱模型的相关系数分别为0.970,0.964,0.680和0.967,检验集的相关系数分别为0.980,0.937,0.717和0.972,检验集的RPD值分别为4.570,2.424,1.411和4.135。结果表明,该方法能够对土壤TN,TP,TC含量进行精确预测,对土壤TK含量进行粗略预测。该研究主要依靠可见光波段,较好的预测了异质性较高的土壤的氮磷钾等养分含量,有望降低未来土壤养分速测的成本。此外,该研究还提供了青岛土壤养分的光谱库,为我国土壤大数据库的建立提供技术支撑。  相似文献   

14.
不饱和脂肪酸是鲜肉脂肪的基本组成成分,其种类和含量直接影响鲜肉的风味和品质。不同于用时长,破坏样品的气相色谱法,近红外分析可快速,无损地对鲜肉中不饱和脂肪酸进行定量检测。选取了驴肉,牛肉,羊肉和猪肉鲜肉样品共63个,在4 000~12 500 cm-1波段上,分别采集了肉块样品和粉碎口径3 mm的肉糜样品在5,10,15,20,25,30,35 ℃下的近红外漫反射光谱,并使用气相色谱法作为参考检测了样品的不饱和脂肪酸含量。为优化模型性能,比较了不同温度下肉块和肉糜样品全波段光谱的棕榈油酸、亚油酸、油酸、二十四碳一烯酸和总不饱和脂肪酸的偏最小二乘模型参数,发现棕榈油酸和总不饱和脂肪酸的5 ℃肉糜光谱模型,亚油酸的35 ℃和油酸的25 ℃肉糜光谱模型,以及二十四碳一烯酸的15 ℃肉块光谱模型较佳,且温度对模型的影响不具有明显的规律性。在较佳模型的基础上,分别以220,440,881和1 762个变量为窗口区间,使用前向和反向区间偏最小二乘法对波长进行了优选,发现棕榈油酸、亚油酸、油酸和总不饱和脂肪酸以220个变量作为窗口的反向区间偏最小二乘模型,以及二十四碳一烯酸以440个变量为窗口的前向区间偏最小二乘模型较佳,且预测性能均优于全波段PLS模型。其中棕榈油酸的建模波段为:4 425~4 636,4 849~5 272,5 486~5 696.7,7 398.6~7 818,8 031.1~8 666.5,9 947~10 363.6,12 495.5~12 498.4 cm-1;亚油酸的建模波段为:4 000.6~4 423.9,5 273.4~5 698.6,7 398.6~9 090.8,10 576.7~10 787.8,12 495.5~12 498.4 cm-1;油酸的建模波段为:4 000.6~4 423.9,4 637~4 848.2,7 398.6~8 242.3,8 455.4~9 090.8,9 947~10 787.8,12 495.5~12 498.4 cm-1;二十四碳一烯酸的建模波段为:4 849.1~5 272.4 cm-1;总不饱和脂肪酸的建模波段为:4 000.6~4 423.9,4 637~5 698.6,9 097.5~9 515.1,9 940.3~10 575.7,11 646~12 060.6,12 273.7~12 498.4 cm-1。使用偏最小二乘法对优选波长光谱数据进行降维,利用得到的潜在变量作为各指标最小二乘-支持向量机模型的输入,并和各指标的区间偏最小二乘模型进行了性能的比较,发现最小二乘-支持向量机模型的各指标定量结果最优。棕榈油酸、亚油酸、油酸、二十四碳一烯酸和总不饱和脂肪酸最优模型的校正集相关系数和均方根误差,以及留一交叉验证相关系数,均方根误差及相对预测误差分别为:0.974,1.403 mg·(100 g)-1,0.973,1.428 mg·(100 g)-1,4.31;0.99,2.233 mg·(100 g)-1,0.99,2.263 mg·(100 g)-1,7.21;0.982,8.194 mg·(100 g)-1,0.982,8.223 mg·(100 g)-1,5.19;0.921,0.224 mg·(100 g)-1,0.92,0.225 mg·(100 g)-1,2.52;0.996,24.21 mg·(100 g)-1,0.995,26.045 mg·(100 g)-1,10.01。其中,亚油酸、油酸和总不饱和脂肪酸最优模型的交叉验证相对预测误差超过5,棕榈油酸最优模型的交叉验证相对预测误差接近5,二十四碳一烯酸的交叉验证相对预测误差接近3,各指标最优模型的预测性能较为令人满意。研究结果表明,波段优选,偏最小二乘降维以及最小二乘-支持向量机算法的结合可对鲜肉中单个不饱和脂肪酸及总不饱和脂肪酸指标的近红外光谱定量结果进行有效的优化。  相似文献   

15.
基于近红外光谱和稀疏偏最小二乘回归的生物质工业分析   总被引:1,自引:0,他引:1  
林木生物质能源作为一种新型可再生能源,具有非常广阔的发展前景。基于近红外光谱技术,首次引入稀疏偏最小二乘回归建立木屑生物质的工业分析模型,用于生物质燃料特性的快速分析测定。工业分析总共测定了80种木屑的水分、灰分、挥发分和固定碳含量百分比;按照样品种类和产地将其划分为训练集和测试集,利用近红外光谱仪采集光谱数据并进行小波滤波处理;再利用稀疏偏最小二乘回归建立木屑生物质的定量分析模型,并与主成分回归、偏最小二乘回归、最小绝对收敛及变量筛选方法的建模效果进行比较。结果证明,相对于以上三种建模方法,稀疏偏最小二乘回归能够挑选出有重要影响的波长群组,降低非目标波段的噪声干扰,从而增强数学模型的解释能力并提高定量分析的准确度。利用稀疏偏最小二乘回归算法挑选的波长区间基本覆盖了工业分析中水分的吸收峰,而对于灰分、挥发分和固定碳的吸收峰波段尚无准确定位,需要继续探讨。总体而言,稀疏偏最小二乘回归能够减少无关信息的干扰,提高模型定量分析的准确度,增强模型的解释能力,将会在近红外光谱技术应用领域内起到重要作用。  相似文献   

16.
全血胆固醇、甘油三酯近红外光谱分析与模型优化   总被引:3,自引:0,他引:3  
为验证近红外光谱测量全血中胆固醇和甘油三酯的可行性,采用近红外透射光谱结合化学计量学方法建立胆固醇和甘油三酯定量分析模型。获取全血在近红外全波段800~2500nm范围的透射光谱后,通过采用间隔偏最小二乘法(iPLS)进行特征波段的选择实现对分析模型的优化。经优化后的胆固醇、甘油三酯分析模型的特征吸收波段分别为1650~1730nm和2260~2340nm,预测相关系数分别为0.79和0.865,预测均方根误差分别为0.5mol/kL和0.28mol/kL。研究结果表明近红外光谱技术可用于测量全血胆固醇、甘油三酯的含量,运用间隔偏最小二乘法可确定特征吸收波段和优化分析模型。  相似文献   

17.
近红外光谱技术快速识别针叶材和阔叶材的研究   总被引:1,自引:0,他引:1  
对一种针叶材和一种阔叶材的横切面采集波长范围为780~2 500 nm的近红外漫反射光谱,结合偏最小二乘判别分析法(PLS-DA)对针叶材杉木和阔叶材桉树快速识别的可行性进行了研究,结果表明:(1)利用近红外光谱结合PLS-DA法建立的识别模型对建模样品的识别正确率达到100%,识别模型预测的分类变量值与实际值之间相关系数r达到0.99,SEC为0.07;(2)即使采用短波区域780~1 100 nm的近红外光谱也可以获得理想的识别结果(识别正确率为100%),识别模型的r也达到0.99,SEC为0.07;(3)利用近红外光谱建立的识别模型对未知样本的识别正确率都为100%,说明近红外光谱技术可以快速、准确识别针叶材和阔叶材,这为木材识别提供了一种新方法和技术,也为开发低成本的近红外光谱识别仪器提供了科学依据。  相似文献   

18.
实验室可见-近红外高光谱数据(VIS-NIR)具有快速、高效、无损等技术优势,被越来越多应用于土壤组分反演中。光谱分辨率越高所能表达的土壤信息越丰富,但也带来了数据冗余。目前,对于不同光谱分辨率对土壤组分建模影响效应分析的研究相对较少。以欧洲土壤中心数据集19036个土壤样本为数据源,以土壤总氮(N)、有机碳(OC)、碳酸钙(CaCO3)、粘土(Clay)为例,基于偏最小二乘回归方法(PLS)并选择30%的随机样本独立验证的方式开展相关研究。首先将所有样本原始0.5 nm分辨率4 200个波段的高光谱数据采用等间距取均值方法分别重采样到2,4,8,…,1 024 nm开展分析。结果表明:随着光谱分辨率的降低,土壤各类组分反演精度均呈下降趋势,光谱分辨率在64 nm以上,4类土壤组分普遍具有较高的模型验证精度(R2>0.65,RPD>1.7),光谱分辨率在128 nm以下CaCO3和Clay组分精度显著变差;4类组分中,CaCO3对光谱分辨率敏感性最强,在高光谱分辨率下反演精度较高(R2>0.86,RPD>2.72),但随光谱分辨率降低精度下降最快。此外,基于光谱响应函数将样本光谱重采样到GF2,S3A,L8,Aster,Modis和S3OLCI六种常见卫星传感器的光谱分辨率展开评价。结果表明:土壤N、OC在各传感器中均可获得较高的精度,甚至在GF2传感器仅有4个波段情况下,也具有不错的验证精度(R2=0.56; RPD=1.51),而土壤CaCO3及Clay反演精度普遍较差;除传感器光谱波段数量外,波段位置对土壤组分的反演能力的影响也很显著,拥有近红外长波(1 100~2 500 nm)光谱范围的传感器对土壤组分的反演能力优于缺少该光谱波段的传感器,特别是粘土矿物的吸收峰多位于近红外长波段,S3A,L8,Aster和Modis传感器的Clay反演能力均优于光谱波段数更多的S3OLCI。该研究成果对土壤组分高光谱数据预处理、卫星数据源的选择及未来传感器光谱通道的设计具有指导意义。  相似文献   

19.
高光谱图像作为一种快速无损的分析技术在食品行业中得到广泛应用。腊肠(sausage)是一个非常古老的食物生产和肉食保存技术,中国的腊肠有着悠久的历史。我国商业行业标准SB/T10003-92按腊肠的理化特征,将腊肠分为优级,一级,二级。针对腊肠在近红外(NIR)波段的高光谱信息,采用连续投影算法(SPA)进行特征波段的提取,分别建立了腊肠等级判别模型PLSR(基于全波段的模型)与SPA-MLR(基于特征波段的模型)。其中,基于特征波长的SPA-MLR模型的预测决定系数达到0.929,判别正确率100%。表明采用高光谱图像的近红外波谱信息能够实现腊肠品质的快速、无损分析。  相似文献   

20.
利用可见-近红外光谱分析技术可以准确快速的获取土壤养分含量,但不同类型土壤间养分含量校正模型的普适性是亟待解决的关键问题。为提高有机质含量光谱校正模型在多类型土壤之间的普适性和农田在线检测有机质含量速度,利用美国M107B区66个样品建立基于可见-近红外光谱的土壤有机质含量的粒子群-最小二乘支持向量机(PSO-LSSVM)校正模型,预测M107B区的23个验证集样品的决定系数R2=0.859,相对分析误差RPD=2.660;将M107B区89个土壤样品作为校正集建模后对N116B区20个验证集样品的有机质含量预测,预测R2=0.562,预测RPD=0.952,模型的预测R2和预测RPD分别降低34.6%和64.2%,表明M107B区土壤有机质含量的可见-近红外光谱校正模型直接用于N116B区时,预测精度显著降低;将N116B区部分土壤样品加入到M107B区样品集后重新建模,并预测N116B区20个验证集样品的有机质含量,当加入的N116B区土壤样品数量达到35以上,预测R2>0.80,预测RPD>2.0;加入到校正集的N116B区土壤样品数量从0增加到50,模型预测R2从0.562增加到0.811,预测RPD从0.952增加到2.274,精度逐渐提高。结果表明,在M107B区校正模型中加入N116B区部分土壤样品建模,能够有效提高M107B区土壤校正模型对N116B区土壤有机质含量的预测精度;加入的N116B区土壤样品数量达到50以上,模型预测性能趋于稳定,预测精度达到实用要求,成功将M107B区土壤有机质含量校正模型传递给N116B区土壤;优先选择与M107B区土壤样品的有机质含量或光谱曲线差异较大的N116B区土壤样品参与建模,可有效避免模型传递时模型性能出现突变。提出的方法能够有效提高M107B区土壤的有机质校正模型对N116B区土壤的预测精度,为基于可见-近红外光谱的农田土壤有机质含量实时检测提供一种新的经济可行的模型传递方法,为提高多类型土壤的有机质含量检测模型的普适性提供一种有效的解决方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号