首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
The capacity of seeds to germinate after ingestion by frugivores is important for the population dynamics of some plant species and significant for the evolution of plant-frugivore interactions. In this paper the effects of different vertebrates on seed germination of nearly 200 plant species are reviewed, searching for patterns that predict the circumstances in which germination of seeds is enhanced, inhibited, or unaffected by the passage through the digestive tract of a seed disperser. It was found that seed dispersers commonly have an effect on the germinability of seeds, or on the rate of germination, or both, in about 50% of the plants they consume, although the diversity of animal species tested so far is still rather low (42 bird species, 28 non-flying mammals, 10–15 bats, 12 reptiles, 2 fishes). Enhancement of germination occurred about twice as often as inhibition.

In spite of the morphological and physiological differences in their digestive tracts, the different animal groups tested have similar effects on seed germination, although non-flying mammals tend to influence germination slightly more often than the other groups. Data on fishes are still too scarce for any generalization. Seed retention time in the dispersers' digestive tract is one factor affecting germination, and helps to explain the variation in seed responses observed among plant species, and even within a species. However other factors are also important; for example, the type of food ingested along with the fruits may affect germination through its influence on chemical or mechanical abrasion of the seed coat. Seed traits such as coat structure or thickness may themselves be responsible for some of the variation in seed retention times. Seeds of different sizes, which usually have different transit times through frugivores, and seeds of either fleshy or dry fruits, show often similar germination response to gut passage.

Seeds of different plants species differ strongly in their germination response after ingestion, even by the same frugivore species. Congeneric plants often show little consistency in their response. Even within a species variation is found which can be related to factors such as the environmental conditions under which germination takes place, seed morphology, seed age, and the season when the seeds are produced.

The effect of gut passage on germination differs between tropical and temperate zones. Seed germination of both shrubs and trees (data on herbaceous species are still scarce) in the temperate zone is more frequently enhanced than in the tropics. This result supports the hypothesis that enhanced germination may be more advantageous in unpredictable or less constant environments. Significant differences in frugivore-mediated germination are also found among different life forms. In both tropical and temperate zones, trees appear to be consistently more affected than shrubs or herbs. This might be due to an overall higher thickness of the seed coats, or to a higher frequency of seed-coat dormancy in tree species.

The influence of frugivory upon the population dynamics of a species has to be evaluated relative to other factors that influence germination and seedling recruitment at a particular site. Whether seed ingestion by dispersers is really advantageous to a plant (as has commonly been assumed) can only be assessed if we also determine the fate of the ingested seeds under natural conditions, and compare it to the fate of seeds that have not been ingested.  相似文献   


7.
食果动物与依赖其传播种子的植物间在进化过程中形成互惠关系,生境破碎化往往干扰种子传播过程,继而破坏这种关系.生境破碎化通常降低食果动物的多样性,但亦有相反的情况出现.食果动物对生境破碎化的适应能力不同,泛性森林动物和广食性动物具有较强的适应性.生境破碎化对依赖动物传播的植物影响有差异,多数植物受到负面影响,但也有一些植物不受影响,甚至受益.动物在破碎生境中对种子传播的有效性是种子搬运量、传播距离、种子萌发及种群建立等环节的综合效果.破碎化生境中种子的搬运量与动物的觅食行为和食物选择有关;种子传播距离受食物资源可获得性的改变和生境斑块异质性的影响;种子萌发和更新种群建立成功与否决定于是否存在有效的种子传播者.生境破碎化如何影响种子传播以及动植物相互关系,尤其是异质斑块的空间分布如何影响食果动物的传播有效性、破碎化生境下动植物互惠共生关系如何建立,生境破碎化导致的植物入侵对本地植物种子传播的影响是未来需要深入研究的问题.  相似文献   

8.
9.
The role of the brown-eared bulbul,Hypsypetes amaurotis, as a dispersal agent for seeds of fruiting plants was studied by field observations for two years, in parallel with laboratory experiments on seed germination. Bulbuls consumed fruits of 53 species from 24 plant families. The fruits of these plants had similar color and size, and these characteristics were likely to enhance the feeding efficiency of the frugivore. Laboratory experiments on 20 food plant species demonstrated that: (1) no seeds were injured by passing through the bulbul's gut; (2) seeds that had passed through the bulbul's gut were still able to germinate and (3) fruit pulp reduced germination ability. When pulp was removed by passing through bulbul's gut, or by hand, germination was improved. An estimate of the home range of six bulbuls suggested that they may transport seeds for at least 300 m.  相似文献   

10.
The 5th Symposium on Frugivores and Seed Dispersal, held in Montpellier (France), 13-18 June 2010, brought together more than 220 researchers exemplifying a wide diversity of approaches to the study of frugivory and dispersal of seeds. Following Ted Fleming and Alejandro Estrada's initiative in 1985, this event was a celebration of the 25th anniversary of the first meeting in Veracruz, Mexico. Frugivory and seed dispersal are active research areas that have diversified in multiple directions since 1985 to include evolution (e.g. phylogenetic diversity and dispersal adaptations), physiology (e.g. sensory cues and digestion), landscape ecology (movement patterns), molecular ecology (e.g. gene flow, genetic diversity and structure), community ecology (e.g. mutualistic interaction networks) and conservation biology (effects of hunting, fragmentation, invasion and extinction), among others. This meeting provided an opportunity to assess conceptual and methodological progress, to present ever more sophisticated insights into frugivory in animals and dispersal patterns in plants, and to report the advances made in examining the mechanisms and consequences of seed dispersal for plants and frugivores.  相似文献   

11.
啮齿动物和鸟类对东灵山地区辽东栎种子丢失的影响   总被引:12,自引:4,他引:12  
20 0 0年 8月中旬至 10月上旬 ,在北京东灵山地区小龙门林场选取两块辽东栎分布近似而坡向不同的样地 ,并对样地内种子库与啮齿动物的种群数量变化进行了调查。结果表明 ,两块样地种子雨持续 4 0天左右 ,且种子下落趋势基本一致 ,高峰期都集中在 9月中旬 ,不同坡向的种子产量差异显著。在两样地随机各设置 2 4个种子方形收集器 (0 5m2 )和 2 0个地表样方 (1 0× 0 5m2 )调查种子产量。通过比较收集器内壳斗和种子数量 ,发现二者无显著差异 ,说明鸟类对林冠层种子丢失作用不明显 ;而收集器和地表样方种子数量差异显著 ,表明辽东栎种子库扩散主要由林中啮齿动物完成。标记重捕发现辽东栎林中啮齿动物群落包括大林姬鼠 ,社鼠 ,棕背鼠平和花鼠 ,其中大林姬鼠为优势种 ,占群落的 77.2 %。  相似文献   

12.
Habitat loss can alter animal movements and disrupt animal seed dispersal mutualisms; however, its effects on spatial patterns of seed dispersal are not well understood. To explore the effects of habitat loss on seed dispersal distances and seed dispersion (aggregation), we created a spatially explicit, individual‐based model of an animal dispersing seeds (SEADS—Spatially Explicit Animal Dispersal of Seeds) in a theoretical landscape of 0%–90% habitat loss based on three animal traits: movement distance, gut retention time, and time between movements. Our model design had three objectives: to determine the effects of (1) animal traits and (2) habitat loss on seed dispersal distances and dispersion and (3) determine how animal traits could mitigate the negative effects of habitat loss on these variables. SEADS results revealed a complex interaction involving all animal traits and habitat loss on dispersal distances and dispersion, driven by a novel underlying mechanism of fragment entrapment. Unexpectedly, intermediate habitat loss could increase dispersal distances and dispersion relative to low and high habitat loss for some combinations of animal traits. At intermediate habitat loss, movement between patches was common, and increased dispersal distances and dispersion compared to continuous habitats because animals did not stop in spaces between fragments. However, movement between patches was reduced at higher habitat loss as animals became trapped in fragments, often near the parent plant, and dispersed seeds in aggregated patterns. As movement distance increased, low time between movements and high gut retention time combinations permitted more movement to adjacent patches than other combinations of animal traits. Because habitat loss affects movement in a nonlinear fashion under some conditions, future empirical tests would benefit from comparisons across landscapes with more than two levels of fragmentation.  相似文献   

13.
Seed and pollen dispersal contribute to gene flow and shape the genetic patterns of plants over fine spatial scales. We inferred fine-scale spatial genetic structure (FSGS) and estimated realized dispersal distances in Phytelephas aequatorialis, a Neotropical dioecious large-seeded palm. We aimed to explore how seed and pollen dispersal shape this genetic pattern in a focal population. For this purpose, we genotyped 138 seedlings and 99 adults with 20 newly developed microsatellite markers. We tested if rodent-mediated seed dispersal has a stronger influence than insect-mediated pollen dispersal in shaping FSGS. We also tested if pollen dispersal was influenced by the density of male palms around mother palms in order to further explore this ecological process in large-seeded plants. Rodent-mediated dispersal of these large seeds occurred mostly over short distances (mean 34.76 ± 34.06 m) while pollen dispersal distances were two times higher (mean 67.91 ± 38.29 m). The spatial extent of FSGS up to 35 m and the fact that seed dispersal did not increase the distance at which male alleles disperse suggest that spatially limited seed dispersal is the main factor shaping FSGS and contributes only marginally to gene flow within the population. Pollen dispersal distances depended on the density of male palms, decreasing when individuals show a clumped distribution and increasing when they are scattered. Our results show that limited seed dispersal mediated by rodents shapes FSGS in P. aequatorialis, while more extensive pollen dispersal accounts for a larger contribution to gene flow and may maintain high genetic diversity. Abstract in Spanish is available with online material.  相似文献   

14.
Current knowledge of frugivory and seed dispersal by vertebrates in the Oriental Region is summarized. Some degree of frugivory has been reported for many fish and reptile species, almost half the genera of non-marine mammals and more than 40% of bird genera in the region. Highly frugivorous species, for which fruit dominates the diet for at least part of the year, occur in at least two families of reptiles, 12 families of mammals and 17 families of birds. Predation on seeds in fleshy fruits is much less widespread taxonomically: the major seed predators are colobine monkeys and rodents among the mammals, and parrots, some pigeons, and finches among the birds. Most seeds in the Oriental Region, except near its northern margins, are dispersed by vertebrate families which are endemic to the region or to the Old World. Small fruits and large, soft fruits with many small seeds are consumed by a wide range of potential seed dispersal agents, including species which thrive in small forest fragments and degraded landscapes. Larger, bigger-seeded fruits are consumed by progressively fewer dispersers, and the largest depend on a few species of mammals and birds which are highly vulnerable to hunting, fragmentation and habitat loss.  相似文献   

15.
The forests of southeastern Amazonia are highly threatened by disturbances such as fragmentation, understory fires, and extreme climatic events. Large‐bodied frugivores such as the lowland tapir (Tapirus terrestris) have the potential to offset this process, supporting natural forest regeneration by dispersing a variety of seeds over long distances to disturbed forests. However, we know little about their effectiveness as seed dispersers in degraded forest landscapes. Here, we investigate the seed dispersal function of lowland tapirs in Amazonian forests subject to a range of human (fire and fragmentation) and natural (extreme droughts and windstorms) disturbances, using a combination of field observations, camera traps, and light detection and ranging (LiDAR) data. Tapirs travel and defecate more often in degraded forests, dispersing much more seeds in these areas [9,822 seeds per ha/year (CI95% = 9,106; 11,838)] than in undisturbed forests [2,950 seeds per ha/year (CI95% = 2,961; 3,771)]. By effectively dispersing seeds across disturbed forests, tapirs may contribute to natural forest regeneration—the cheapest and usually the most feasible way to achieve large‐scale restoration of tropical forests. Through the dispersal of large‐seeded species that eventually become large trees, such frugivores also contribute indirectly to maintaining forest carbon stocks. These functions may be critical in helping tropical countries to achieve their goals to maintain and restore biodiversity and its ecosystem services. Ultimately, preserving these animals along with their habitats may help in the process of natural recovery of degraded forests throughout the tropics. Abstract in Portuguese is available with online material.  相似文献   

16.
Abstract The consumption of fruits by vertebrates and invertebrates can be both advantageous or detrimental to the survival of the seeds they contain. This study investigated the effect of fruit size and consumption of fruit pulp by rodents and beetles on the germination of the seeds of Acmena graveolens, a tropical rainforest canopy tree found in northern Australia. As fruit size increased, germination success and the amount of pulp remaining on the fruits was greater. When beetles were absent, germination success was highest when most of the pulp was removed by rodents, suggesting that they removed an inhibitor of germination. When beetles were present, germination success did not differ significantly across pulp categories, so beetles apparently enhanced germination in seeds with little pulp initially removed, possibly by further removal of fruit pulp. In this study, both rodents and beetles enhanced germination success of A. graveolens seeds by consumption of fruit pulp. Acting as facilitators of germination is a relatively unusual role for both these frugivores that are generally considered to act as seed predators or (in the case of rodents) dispersers.  相似文献   

17.
Scatter‐hoarding animals spread out cached seeds to reduce density‐dependent theft of their food reserves. This behaviour could lead to directed dispersal into areas with lower densities of conspecific trees, where seed and seedling survival are higher, and could profoundly affect the spatial structure of plant communities. We tested this hypothesis with Central American agoutis and Astrocaryum standleyanum palm seeds on Barro Colorado Island, Panama. We radio‐tracked seeds as they were cached and re‐cached by agoutis, calculated the density of adult Astrocaryum trees surrounding each cache, and tested whether the observed number of trees around seed caches declined more than expected under random dispersal. Seedling establishment success was negatively dependent on seed density, and agoutis carried seeds towards locations with lower conspecific tree densities, thus facilitating the escape of seeds from natural enemies. This behaviour may be a widespread mechanism leading to highly effective seed dispersal by scatter‐hoarding animals.  相似文献   

18.
19.
20.
Birds and mammals are important seed dispersers of fleshy-fruited plants. Although their behaviors are different, they frequently consume the same species. Thus to understand the dispersal of fleshy-fruited plants, the contribution of birds and mammals to seed dispersal has to be evaluated. Besides, within birds or mammals, some species may functionally different from others. In this study, we examined seed dispersal of the fleshy-fruited tree Swida controversa focusing on the difference between two frugivore groups (birds and mammals), and differences between species within groups. Collected seeds and S. controversa trees were identified using simple sequence repeat (SSR) genotyping, thus enabling to determine the distance between mother tree and dispersed seeds. The avian species were identified by DNA barcoding of feces, whereas the mammalian species were identified by the shape and smell of feces. Most seeds that fell near or under the maternal trees were dispersed by birds, resulting in short seed dispersal distances (average, 13 m). DNA barcoding detected five taxa of avian dispersers. No differences were detected in seed dispersal distance by different avian taxa (i.e., the distance between dispersed seeds and their maternal trees within the research plot); however the rate of seed immigration from outside the research plot by some avian taxa varied significantly. The seed dispersal distance by mammals was significantly further (127 m; min > 50 m) than that by birds. Additionally, immigrated seeds accounted for approximately two-thirds of mammal-dispersed seeds, indicating that these seeds were from outside the research plot, and that mammals significantly contributed to the long-distance seed dispersal of S. controversa. No differences in seed dispersal distance were detected between different mammalian taxa. Overall, this study revealed that birds and mammals show clearly different seed dispersal patterns, and thus, they play different roles in the regeneration of S. controversa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号