首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 62 毫秒
1.
将二硝基甲苯废水(简称废水)酸析后进行超声波-超重力-臭氧氧化处理,考察了酸的种类及废水pH对酸析效果的影响.实验结果表明:加入质量分数98%的H2SO4溶液调节废水pH为1.0时,酸析效果较好,酸析后废水COD去除率为38.50%,硝基化合物的去除率为45.26%,酸析析出物为一硝基甲苯磺酸;酸析后废水经超声波-超重...  相似文献   

2.
采用大孔树脂吸附—Fenton试剂氧化法预处理含邻苯二甲酸二异丁酯(DIBP)废水。大孔树脂吸附工段的最佳实验条件为:以树脂NDA88为吸附剂,废水pH为2。NDA88经过10批次的连续使用,COD去除率基本稳定在58%左右,脱附率可达96%以上,吸附后废水COD为12 000 mg/L左右。Fenton试剂氧化工段的最佳实验条件为:H2O2加入量70 mL/L,n(H2O2):n(Fe2+)=4,废水pH 4。在此最佳条件下进行实验,Fenton试剂氧化工段COD去除率达65%,处理后废水COD为4 200 mg/L。  相似文献   

3.
用酸析-Fenton试剂氧化-混凝法对自偶氧化清洁制浆废水进行预处理,考察了各种因素对处理效果的影响。最佳处理条件:酸析时的废水pH为3.0;酸析后上层清液无需调节pH,加水稀释至COD为2000mg/L后进行Fenton试剂氧化,H2O2加入量为84.56mmol/L,FeS04加入量为8.44mmol/L,反应时间60min;混凝时Ca(OH):加入量为2g/L。最终出水的COD为577.20mg/L(COD去除率为71.14%),色度为36倍,pH为8.60。  相似文献   

4.
三元微电解—Fenton试剂氧化法深度处理石化废水   总被引:3,自引:0,他引:3  
曹雨平  刘亚凯  吴妍 《化工环保》2011,31(6):519-523
采用三元微电解-Fenton试剂氧化法处理COD为60 ~ 90 mg/L的石化废水.三元微电解工艺最优条件为:m(铝屑)∶m(铁屑)∶m(活性碳)=1∶2∶2,废水初始pH 4 ~5,微电解时间45 min.Fenton试剂氧化工艺最优条件为:H2O2加入量0.6mL/L,废水pH 4,氧化时间30 min.在此条件...  相似文献   

5.
采用酸析—微电解—Fenton试剂氧化联合工艺预处理苯达松废水。考察了酸析pH、铸铁粉加入量、微电解时间、双氧水加入量、Fenton试剂氧化时间等因素对废水处理效果的影响。实验结果表明:最佳工艺条件为酸析pH 3.0,铸铁粉加入量1.0 g/L,微电解时间2 h,Fenton试剂氧化时间4 h,双氧水加入量25 mL/L;在最佳工艺条件下处理初始COD为22 500 mg/L、BOD5/COD为0.08、色度为2 500倍的苯达松废水,总COD去除率为96.2%,出水COD为858 mg/L,出水色度为150倍,BOD5/COD为0.38;采用微电解—Fenton试剂氧化联合工艺预处理酸析后的苯达松废水,处理效果远高于单独微电解和单独Fenton试剂氧化工艺。  相似文献   

6.
采用Fenton试剂氧化—原水调节出水pH法预处理碱性印染废水,考察了n(H2O2):n(Fe2+)、Fenton试剂加入量、反应时间和原水与Fenton试剂氧化反应后出水体积比(配水比)对COD去除率及废水pH的影响.实验结果表明,在原水COD为986 mg/L、原水pH为9.31、Fe2+加入量为12 mmol/L、n(H2O2):n(Fe2+)为2、反应时间为30 min、配水比为2的最佳条件下,COD去除率为26.9%,出水pH为6.60.药剂成本较普通Fenton试剂氧化法减少70%.  相似文献   

7.
pH调节-Fenton试剂氧化法预处理间甲酚生产氧化废水   总被引:15,自引:2,他引:13  
采用pH调节结合Fenton试剂氧化的方法对间甲酚生产氧化废水进行预处理,探讨了pH调节条件及Fenton试剂氧化条件对废水处理效果的影响。结果表明,在室温下将废水pH调节至4.0时,由于其中的部分有机污染物析出,COD可以从78000mg/L下降至61000mg/L,COD去除率达20%以上;接着在H2O2质量浓度与COD的比值为0.18、Fe^2+与H2O2质量浓度的比值为0.267、反应时间为20min的条件下对废水进行Fenton试剂氧化处理,COD可以进一步下降至26000mg/L,COD去除率接近70%。  相似文献   

8.
ASBR-SBR-Fenton氧化工艺处理均苯四甲酸生产废水   总被引:1,自引:1,他引:0  
翟建  姜春华 《化工环保》2011,(2):144-147
采用厌氧序批式反应器( ASBR)-SBR-Fenton氧化工艺处理均苯四甲酸生产废水,运行结果表明,在进水COD为4 200 ~5 100 mg/L,BOD5为1 500~1 800 mg/L的条件下,处理后出水COD为40 mg/L,出水水质达到GB8978-1996《中华人民共和国国家标准污水综合排放标准》的I级...  相似文献   

9.
铁炭微电解-Fenton试剂氧化法预处理广灭灵及丙草胺废水   总被引:4,自引:1,他引:3  
采用铁炭微电解~Fenton试剂氧化法预处理广灭灵和丙草胺废水(简称废水),考察了H2O2加入量、高浓度废水COD对废水处理效果的影响,进行了连续流废水处理实验。实验结果表明:Fenton试剂氧化反应的废水处理效果明显好于铁炭微电解反应;铁炭微电解对COD的去除率可达60.6%,Fenton试剂氧化反应后COD的总去除率可达72.3%;连续流废水处理效果差于静态实验。处理后,低浓度废水的BOD,/COD从0.28~0.32增至0.47,高浓度废水的BOD,/COD从0.39增至0.47。  相似文献   

10.
采用吸附-Fenton氧化-絮凝法处理对硝基苯胺生产废水(简称废水),研究了吸附剂、脱附温度、絮凝剂等因素对处理效果的影响.经实验确定的最佳工艺条件为:DM301大孔树脂加入量5.0 g/L,吸附时间20 h,Fenton氧化pH 3.0,H_20_2加入量0.3 moL/L,m(Fe):m(H_20_2)=6,絮凝阴离子型聚丙烯酰胺加入量20 mg/L.在此条件下对COD为2 780 mg/L、色度为185倍和pH为12.2的废水进行处理,出水的COD、色度和pH分别为169 mg/L、10倍和6.5,COD去除率和色度去除率分别达到93.9%和94.5%.DM301树脂在10~25次重复使用后对硝基苯胺的平均总去除率为47.7%,对硝基苯胺的平均回收率为37.9%.  相似文献   

11.
Fenton氧化-生物接触氧化工艺处理甲醛和乌洛托品废水   总被引:5,自引:3,他引:5  
采用Fenton氧化一生物接触氧化工艺处理含甲醛和乌洛托品的模拟废水(简称废水),在H2O2(体积分数30%)加入量2.5g/L、H2O2与Fe^2+质量浓度比3.75、反应时间3h、不调节废水初始pH的Fenton氧化预处理最佳操作条件下,废水COD从1000mg/L左右降至300mg/L,COD去除率达72%。原废水完全无法直接进行生化处理,经Fenton氧化预处理后其BOD,/COD约为0.5,易于生化处理。Fenton氧化一生物接触氧化工艺处理废水,生物接触氧化停留时间为12h时,废水COD去除率高达94%,处理后出水COD小于70mg/L,处理效果很好。  相似文献   

12.
采用Fenton试剂强化微电解反应预处理难降解含氰农药废水.实验结果表明,在总反应时间为3.0 h、反应开始时加入1 mL/L H2O2、反应1.5 h后再加入3mL/L H2O2的条件下,出水COD为372.0 mg/L,COD去除率可达80.2%,出水p(CNˉ)为2.2 mg/L,色度为20倍,BOD5/COD为0.35,可实现处理效果与经济成本的最优化.采用紫外-可见光谱分析处理后废水,发现Fenton试剂强化微电解反应可破坏部分微电解作用难以降解的有机物,但对苯环的降解能力均有限.  相似文献   

13.
树脂吸附-Fenton试剂氧化法处理水杨醛生产废水   总被引:1,自引:0,他引:1  
采用树脂吸附-Fenton试剂氧化法处理水杨醛生产废水。XF-01树脂和XF-02树脂静态吸附水杨醛生产废水时,COD去除率均在85%以上,挥发酚去除率均高于90%。XF-02树脂对水杨醛生产废水的处理效果更佳。动态吸附随废水流量增大,吸附出水的COD和挥发酚质量浓度均增加。适宜的废水流量为15BV,树脂的最佳脱附温度为80℃。在连续4批的吸附-脱附实验中,吸附出水的平均COD约为1200mg/L,平均挥发酚质量浓度小于10mg/L。在Fenton试剂氧化中,铁屑和铁粉的催化效果差别很小,都好于FeSO4·7H2O。以铁屑为催化剂、H2O2溶液加入量为1%时,氧化出水的COD小于150mg/L,挥发酚质量浓度小于0.5mg/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号