首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
在把握混凝土防渗面板地震响应及工作特性的基础上,采取工程措施有效降低面板的地震应力,保证强震时超高面板坝的安全运行,是面板坝跨越200 m级向更高坝发展亟待解决的关键技术问题之一。本文建议了一种根据面板动应力响应确定在最优位置(高程)设置永久水平缝及采用柔性加筋结构的组合抗震措施来有效降低面板地震应力,并以300 m超高坝为例,通过非线性三维有限元方法,系统地研究了永久水平缝设置位置(高程)、长度对地震应力改善效果的影响。并对不同坝高、河谷岸坡的数模坝进行分析计算,总结给出永久水平缝有效的设置位置(顺坡向动拉应力最大处)范围为0.70 H~0.85 H(H,坝高)的河谷中部坝段,其长度为0.3 L(L,坝轴长)左右。  相似文献   

2.
采用三维非线性有限元方法,分析了高面板堆石坝的混凝土面板在不同输入加速度峰值作用下的动力反应。计算结果表明,面板的顺坡向峰值动应力发生在0.8倍坝高附近,坝轴向峰值动应力发生在坝顶中间部位的面板区域;面板的峰值动应力随着输入加速度的增大呈非线性增大。面板中上部会出现较大的动应力,可能会使面板发生顺坡向和坝轴向的挤压或拉裂破坏,因此建议该区域加强配筋。  相似文献   

3.
采用三维有限元法,对某胶凝砂砾石坝开展静、动力结构计算,重点分析了坝体和井廊系统的动位移、加速度和动应力分布规律。结果表明:坝体动位移、加速度和动应力反应分布符合一般规律,其中顺河向、竖向和坝轴向动位移极值分别为0.29 cm、0.13 cm和0.08 cm,顺河向、竖向和坝轴向加速度极值分别为5.88 m/s2、4.53 m/s2和2.71 m/s2,静动叠加后的坝体第一主应力最大值为1.20 MPa,第三主应力最小值为-1.78 MPa,均小于相应材料的抗拉和抗压强度,因此大坝满足强度要求。静力条件下,井廊道系统的拉应力和压应力极值均小于相应的规范允许值;地震作用下,竖井和廊道局部区域出现较大的拉、压应力,其中瞬时动拉应力超过混凝土的动抗拉强度,通过加强井廊系统的局部配筋,总体上能够满足安全运行的要求。  相似文献   

4.
对Abaqus软件进行二次开发,引入等效线性模型,对某心墙堆石坝进行了三维有限元地震反应分析,研究了大坝在Ⅶ度地震下的加速度、动剪应力、相对动位移等反应规律。同时,分别对该坝考虑三向地震波输入及仅两个水平向地震波输人情况下的地震动力反应进行了计算比较,研究竖向地震加速度在Ⅶ度地震下对大坝的影响。结果表明:Ⅶ度地震情况下竖向地震波对土石坝顺河向和坝轴向的动力反应几乎没有影响,但是对竖向的影响不可忽略。  相似文献   

5.
为了评价云南省内某胶凝砂砾石坝的抗震安全性,采用反应谱法对大坝开展地震动力反应计算,获得大坝动位移、加速度和动应力分布规律。计算表明:大坝在Ⅷ度地震作用下,动位移和加速度反应分布符合一般规律,其中三向动位移极值分别为0.41 cm、0.15 cm和0.14 cm,三向加速度极值分别为9.18 m/s2、6.02 m/s2和4.47 m/s2。静动叠加后,大坝顺河向、竖向和坝轴向拉应力极值分别为0.75 MPa、2.00 MPa和0.58 MPa,顺河向、竖向和坝轴向压应力极值分别为-2.53 MPa、-1.65 MPa和-2.79 MPa,拉应力和压应力极值均小于相应筑坝材料的抗拉和抗压强度。总体上,大坝地震反应规律性好,抗震安全高,地震作用下坝体不会出现动力破坏问题。  相似文献   

6.
高面板堆石坝面板应力分布特性及其规律   总被引:2,自引:2,他引:0  
孔宪京  张宇  邹德高 《水利学报》2013,44(6):631-639
准确把握高面板堆石坝静、动力条件下面板高应力区分布特性是保障防渗面板安全的关键问题。本文采用非线性三维有限元方法,以200m高坝为例,系统地研究高混凝土面板堆石坝在填筑和蓄水过程、遭遇瞬时地震及震后面板的高拉与压应力区分布特性及其规律,以及坝体几何特征参数对面板高应力区分布的影响。研究结果表明:面板顺坡向高拉应力区集中分布在河谷处岸坡附近及河谷中央(河谷坝段)坝高4/5~2/3范围内,坝轴向高压应力区主要分布在河谷中央竖缝两侧面板之间,据此建议了一系列改善面板应力的工程措施。  相似文献   

7.
高面板堆石坝面板应力分布特性及其规律   总被引:1,自引:0,他引:1  
准确把握高面板堆石坝静、动力条件下面板高应力区分布特性是保障防渗面板安全的关键问题。本文采用非线性三维有限元方法,针对150m以上的高面板堆石坝,系统地研究其在填筑和蓄水过程、遭遇瞬时地震及震后面板的高拉、压应力区分布特性及其规律,以及坝体几何特征参数对面板高应力区分布的影响。研究结果表明:面板顺坡向高拉应力区集中分布在河谷处岸坡附近及河谷中央(河谷坝段)坝高4/5~2/3范围内,坝轴向高压应力区主要分布在河谷中央竖缝两侧面板之间,据此建议了一系列改善面板应力的工程措施。  相似文献   

8.
基于SBFEM的面板坝与可压缩库水动力耦合弹塑性分析方法   总被引:2,自引:0,他引:2  
许贺  邹德高  孔宪京  刘京茂 《水利学报》2018,49(11):1369-1377
采用比例边界有限元法(SBFEM)模拟库水,可将求解维数降低一维,而且可考虑库水可压缩性、库底淤沙的波能吸收效应等因素。但在时域计算前,该方法需要进行多次的动水压力频域求解以获得时域脉冲响应函数,计算量较大。本文采用SBFEM模拟坝前可压缩库水,并且将其与有限元方法(FEM)离散的面板坝(CFRD)耦合,进而建立了面板坝与可压缩库水动力耦合弹塑性分析方法;并根据坝与库水动力耦合响应的特点,对动水压力计算过程进行了简化处理,仅需确定截断频率,即可大幅度地降低动水压力频域求解的计算量,还可保证较高的计算精度。数值结果表明,面板坝越高,计算效率提高的越多,给出如下建议:当100 mH≥50 m时,取ωT=40π;当200 mH≥100 m时,取ωT=30π;当H≥200 m时,取ωT=20π。  相似文献   

9.
基于坝体-地基-库水系统运用三维线弹性有限元方法对双曲砌石拱坝进行了动力分析.比较了不同水位对拱坝自振特性的影响,采用时程分析法计算了双曲砌石拱坝在地震作用下的动应力、动位移及加速度,结果表明:坝水耦合作用提高了坝的整体质量,降低了自振频率;动应力、动位移及加速度的最大值均出现在拱冠顶部,而且当拱坝系统受3个方向地震波共同击振作用时坝体反应最为强烈.  相似文献   

10.
针对高面板堆石坝的结构特性,采用三维非线性有限元技术,对大坝的地震反应特性及抗震安全性进行计算分析。动力计算中坝体材料及覆盖层按照等效线性黏弹性模型考虑围压效应进行模拟,混凝土面板动力计算分析采用线性弹性模型,并依据考虑围压效应的残余体应变及残余轴应变的动应力-残余应变模型对某高面板堆石坝进行坝体地震工况下永久变形计算。计算结果显示:顺河向最大永久变形为15cm,竖直向最大永久变形为49cm,均发生坝顶位置,地震引起的竖向变形为坝高的0.4%;三维动力参数敏感性分析表明,堆石体的水平绝对加速度反应极值为9m/s~2,最大放大系数为4.2,堆石体、面板最大地震反应位于坝顶局部位置,存在明显的鞭稍效应,但坝体地震反应的分布规律一致,坝体及面板抗震安全性较好。  相似文献   

11.
基于三维有限元非线性方法,考虑某高面板堆石坝面板分期施工浇筑的特点,建立精细模拟面板特性的子模型,用有厚度的接触面单元模拟坝体与面板的接触面,设置相应的连接单元模拟面板缝的相互作用,分析了该面板堆石坝在施工期和蓄水期坝体和面板的应力变形,并与类似坝高的面板堆石坝的计算或监测结果进行比较。结果表明:在施工期和蓄水期坝体的最大沉降值约为坝高的1%,位于次堆石区;面板应力以压应力为主,拉应力主要集中在面板与周边山体连接处;周边缝的最大错动剪切变形、最大张拉变形及最大沉降剪切变形均未超过30 mm。  相似文献   

12.
基于理想流体,将进水塔简化成水中悬臂梁体系,推导了其受迫振动时的动力响应方程,给出了进水塔内外表面动水压力的解析表达式。与有限元法、水工抗震规范公式计算结果进行了对比,分析验证了该方法在进水塔结构上的适用性及准确性。结果表明:动水压力表达式与结构振型密切相关。该方法的动水压力曲线趋势与有限元方法相似,均在水面以下某深度处迅速变大及达到最大值后曲线值减小弯回,两者最终在塔体底部收于相近的值;最大值大于有限元法,其最大值处曲线折回明显,幅度较大。弹性模量和进水塔高度对动水压力的曲线形态和数值有重要影响。同时,输入激励荷载的频率对动水压力影响巨大,尤其频率与进水塔某阶频率相近时会导致动水压力的异常增大。该方法对分析进水塔动水压力具有参考价值。  相似文献   

13.
徐泽平  陆希  翟迎春  严祖文  姬阳  徐耀 《水利学报》2022,53(12):1397-1409
为深入了解河谷地形因素对混凝土面板堆石坝应力变形特性的影响,采用一个典型的混凝土面板堆石坝三维有限元模型进行了不同岸坡坡度与河床宽度等影响因子的分析研究,并在总结已有相关研究成果的基础上,结合工程实例,探讨了改善峡谷地区混凝土面板堆石坝应力变形特性的工程措施。研究成果表明:河谷地形对大坝的作用主要表现在岸坡对坝体和面板的约束及顶托作用,这种作用随大坝长高比的增加而减弱。对于修建于狭窄河谷中的面板坝,其堆石体位移梯度和面板的压应力数值相对较大。工程上可采取提高堆石体压实密度,设置岸坡增模堆石区,以及合理确定面板浇筑时机和设置可吸收变形的面板纵缝填充材料等措施,以控制坝体变形并改善面板的应力状态。  相似文献   

14.
以玛尔挡水电站面板坝工程为例,建立了不同河谷坡度方案下的面板坝三维有限元模型,研究不同河谷坡度下高面板堆石坝坝体的静动位移和应力分布情况,分析了河谷坡度对坝体应力变形特征的影响,探讨了地震工况下河谷坡度对坝体结构稳定性的影响。结果表明:河谷坡度为50°时堆石体内部将会出现较明显的应力拱效应现象,河谷边坡陡缓临界值近似为50°;坝体沉降与坡度变化之间呈负相关关系;地震作用未对拱效应存在下的坝体产生显著的不利影响。  相似文献   

15.
为了准确模拟地震作用下重力坝坝面动水压力,采用比例边界有限元与有限元的无缝耦合理论,提出了一种考虑坝体和库底柔性的坝面动水压力计算方法。该方法采用比例边界有限元的理论,可仅离散坝水交界面实现半无限库水的高效高精度模拟,且能方便考虑库水的可压缩性以及库底和岸坡的吸收作用;采用有限元离散坝体结构,通过作用在大坝迎水面上的动水压力实现对大坝-库水系统的求解。算例计算结果表明,该方法计算得到的重力坝坝面动水压力与已有文献计算结果吻合较好;坝体柔性削弱了坝面动水压力;坝面动水压力随库底反射系数的减小而减小。  相似文献   

16.
组合型面板堆石坝是在下游底部设置混凝土坝与面板堆石坝形成的复合坝。以某150 m级面板坝工程为依托, 采用三维非线性有限元方法, 系统研究了组合型面板坝堆石坝体、混凝土坝以及防渗体系的应力应变特性。结果表明, 与常规面板堆石坝相比, 该组合坝型在堆石坝体变形方面虽没有显著改变, 但由于缩短了面板和垂直缝长度, 面板应力应变状况得到了有效改善, 且通过将混凝土坝坝顶宽度设置成大于趾板宽度, 可有效避免由高趾板引起的周边缝变位过大问题。目前200 m级高面板坝最突出问题是面板的结构性裂缝和挤压破坏, 而该组合坝型可以有效改善面板应力状态, 为超高面板坝的建设提供了新的思路。  相似文献   

17.
针对地震作用下面板坝的非线性动力反应,为了准确评估大坝的极限抗震能力,从坝坡抗震稳定性、坝体震后残余变形、坝基覆盖层液化和面板接缝变形等方面探讨面板坝的地震破坏计算方法和评价标准。采用三维有限元法,对某覆盖层上高135 m的混凝土面板堆石坝进行极限抗震能力计算,结合多角度综合分析表明,大坝的极限抗震能力约为0.52g~0.54g,大坝具有较强的抗震能力。  相似文献   

18.
吉音水利枢纽工程混凝土面板坝高趾墙设计   总被引:1,自引:0,他引:1  
采取高趾墙作为非受力结构的垂直防渗体,在狭窄河谷吉音混凝土面板堆石坝的设计中与趾板、面板共同构成坝体上游封闭防渗体系的设计思路,并进行高趾墙三维静、动力有限元分析。结果表明,高趾墙在各种设计工况下均能满足设计要求。作为一种新型的防渗结构,高趾墙防渗体可为面板坝在应对不利地形、地质问题时提供一个新的设计思路。  相似文献   

19.
建立新的有限元分析方法,为准确合理地进行高面板堆石坝的坝坡稳定动力分析提供参考。基于应力水平的有限元计算结果,将大型有限元软件ADINA的应力变形计算功能与GEO-SLOPE软件的边坡稳定分析功能相结合,提出了高面板堆石坝坝坡稳定动力有限元分析方法,并利用该方法对紫坪铺水利枢纽工程面板堆石坝在"5·12"汶川大地震期间的大坝动力反应及坝坡稳定进行了三维有限元模拟分析,得出坝体位移的动力分析计算结果与该坝震后位移实际观测结果基本吻合,坝坡动力稳定的分析计算结果与震后实际调查分析结果基本一致。所提出的高面板堆石坝坝坡稳定动力有限元分析方法是合理的,所获得的分析计算结果准确可信。  相似文献   

20.
This study presents earthquake performance analysis of the Torul Concrete-Faced Rockfill (CFR) Dam with two-dimensional dam-soil and dam-soil-reservoir finite element models. The Lagrangian approach was used with fluid elements to model impounded water. The interface elements were used to simulate the slippage between the concrete face slab and the rockfill. The horizontal component of the 1992 Erzincan earthquake, with a peak ground acceleration of 0.515g, was considered in time-history analysis. The Drucker-Prager model was preferred in nonlinear analysis of the concrete slab, rockfill and foundation soil. The maximum principal stresses and the maximum displacements in two opposite directions were compared by the height of the concrete slab according to linear time-history analysis to reveal the effect of reservoir water. The changes of critical displacements and principal stresses with time are also shown in this paper. According to linear and nonlinear time-history analysis, the effect of the reservoir water on the earthquake performance of the Torul CFR Dam was investigated and the possible damage situation was examined. The results show that the hydrodynamic pressure of reservoir water leads to an increase in the maximum displacements and principal stresses of the dam and reduces the earthquake performance of the dam. Although the linear time-history analysis demonstrates that the earthquake causes a momentous damage to the concrete slab of the Torul CFR Dam, the nonlinear time-history analysis shows that no evident damage occurs in either reservoir case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号