首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of all-electron density functional calculations on the bimetallic cluster compounds [M(4){Fe(CO)(4)}(4)](4-) (M = Cu, Ag, Au) and on the corresponding naked species M(4)Fe(4) are reported. The trends within the triad have been investigated. The bare metal clusters exhibit a strong magnetization which is quenched on addition of CO ligands. The bonding in the bare clusters is different for the silver derivative compared to that of copper and gold, resulting in comparatively weaker Ag-Fe and Ag-Ag bonds. This can be rationalized in terms of the different d-sp mixing, which for Cu and Au is larger than for Ag. Relativistic effects act to increase the 4d-5s mixing in Ag and to strengthen the intermetallic bond with Fe. In the carbonylated clusters a charge transfer from the metal M (M = Cu, Ag, or Au) to the Fe(CO)(4) groups occurs so that the atoms M can be considered in a formal +I oxidation state, rationalizing the nearly square-planar geometry of the metal frame. In fact, the local coordination of the M atoms is almost linear, as expected for complexes of M(I). The addition of extra electrons results in a stabilization of the clusters, indicating the electron-deficient nature of these compounds. Similar features have been found for the largest cluster synthesized so far for this class of compounds, [Ag(13){Fe(CO)(4)}(8)](n)(-), (n = 0-5). The nature and localization of the unpaired electron in the tetraanion is also discussed.  相似文献   

2.
The molecular and electronic structures of the d(4)d(4) face-shared [M(2)Cl(9)](3)(-) (M = Mn, Tc, Re) dimers have been calculated by density functional methods in order to investigate metal-metal bonding in this series. The electronic structures of these systems have been analyzed using potential energy curves for the broken-symmetry and other spin states arising from the various d(4)d(4) coupling modes, and closed energy cycles have been utilized to identify and quantify the parameters which are most important in determining the preference for electron localization or delocalization and for high-spin or low-spin configurations. In [Tc(2)Cl(9)](3)(-) and [Re(2)Cl(9)](3)(-), the global minimum has been found to be a spin-triplet state arising from the coupling of metal centers with low-spin configurations, and characterized by delocalization of the metal-based electrons in a double (sigma and delta(pi)) bond with a metal-metal separation of 2.57 A. In contrast, high-spin configurations and electron localization are favored in [Mn(2)Cl(9)](3)(-), the global minimum for this species being the ferromagnetic S = 4 state with a rather long metal-metal separation of 3.43 A. These results are consistent with metal-metal overlap and ligand-field effects prevailing over spin polarization effects in the Tc and Re systems, but with the opposite trend being observed in the Mn complex. The ground states and metal-metal bonding observed for the d(4)d(4) systems in this study parallel those previously found for the analogous d(2)d(2) complexes of V, Nb, and Ta, and can be rationalized on the basis that the d(4)d(4) dimer configuration is the hole equivalent of the d(2)d(2) configuration.  相似文献   

3.
Chen YD  Zhang LY  Qin YH  Chen ZN 《Inorganic chemistry》2005,44(18):6456-6462
Polynuclear heterovalent Au(III)-M(I) (M = Cu, Ag, Au) cluster complexes [Au(III)Cu(I)8(mu-dppm)3(tdt)5]+ (1), [Au(III)3Ag(I)8(mu-dppm)4(tdt)8]+ (2), and [Au(III)Au(I)4(mu-dppm)4(tdt)2]3+ (3) were prepared by reaction of [Au(III)(tdt)2]- (tdt = toluene-3,4-dithiolate) with 2 equiv of [M(I)2(dppm)2]2+ (dppm = bis(diphenylphosphino)methane). Complex 3 originates from incorporation of one [Au(III)(tdt)2]- with two [Au(I)2(dppm)2]2+ components through Au(III)-S-Au(I) linkages. Formation of complexes 1 and 2, however, involves rupture of metal-ligand bonds in the metal components and recombination between the ligands and the metal atoms. The Au(tdt)2 component connects to four M(I) atoms through Au(III)-S-M(I) linkages in syn and anti conformations in complexes 1 (M = Cu) and 3 (M = Au), respectively, but in both syn and anti conformations in complex 2 (M = Ag). The tdt ligand exhibits five types of bonding modes in complexes 1-3, chelating Au(III) or M(I) atoms as well as bridging Au(III)-M(I) or M(I)-M(I) atoms in different orientations. Although complexes 1 and 2 are nonemissive, Au(III)Au(I)(4) complex 3 shows room-temperature luminescence with emission maximum at 555 nm (tau(em) = 3.1 micros) in the solid state and at 570 nm (tau(em) = 1.5 micros) in acetonitrile solution.  相似文献   

4.
The structures of two cyanoaurate-based coordination polymers, M(mu-OH(2))(2)[Au(CN)(2)](2) (M=Cu, Ni), were determined by using a combination of powder and single-crystal X-ray diffraction techniques. The basic structural motif for both polymers contains rarely observed M(mu-OH(2))(2)M double aqua-bridges, which generate an infinite chain; two trans [Au(CN)(2)](-) units also dangle from each metal center. The chains form ribbons that interact three dimensionally through CNH hydrogen bonding. The magnetic properties of both compounds and of the dehydrated analogue Cu[Au(CN)(2)](2) were investigated by direct current (dc) and alternating current (ac) magnetometry; muon spin-relaxation data was also obtained to probe their magnetic properties in zero-field. In M(mu-OH(2))(2)[Au(CN)(2)](2), ferromagnetic chains of M(mu-OH(2))(2)M are present below 20 K. Interchain magnetic interactions mediated through hydrogen bonding, involving water and cyanoaurate units, yield a long-range magnetically ordered system in Cu(mu-OH(2))(2)[Au(CN)(2)](2) below 0.20 K, as indicated by precession in the muon spin polarization decay. Ni(mu-OH(2))(2)[Au(CN)(2)](2) undergoes a transition to a spin-glass state in zero-field at 3.6 K, as indicated by a combination of muon spin-relaxation and ac-susceptibility data. This transition is probably due to competing interactions that lead to spin frustration. A phase transition to a paramagnetic state is possible for Ni(mu-OH(2))(2)[Au(CN)(2)](2) upon application of an external field; the critical field was determined to be 700 Oe at 1.8 K. The dehydrated compound Cu[Au(CN)(2)](2) shows weak antiferromagnetic interactions at low temperatures.  相似文献   

5.
采用从头算Hartree-Fock(HF),M??ller-Plesset微扰(MP2),二级近似耦合簇(CC2)和密度泛函理论(DFT)方法,对IB族金属-乙烯配合物LM-C2H4(L=[N{(Me)C(Ph)N}2];M=Cu,Ag,Au)的几何结构、电子结构以及LM与C2H4之间的结合能进行了理论研究.MP2、CC2和密度泛函方法对C2H4配位前后C=C键长的变化情况都给出了正确的描述.电子结构分析显示LM与C2H4之间主要以C2H4→LM"σ-给予"和LM→C2H4"π-反馈"方式协同成键,这种成键方式使C2H4配体π轨道上的电子密度下降,π*轨道上的电子密度增加,并使得C=C键长增加、键能下降,从而达到活化C=C键的目的.自然电荷布居和能量分解分析显示LM-C2H4中的"σ-给予"作用弱于"π-反馈"作用,若使用"σ-给予"作用强于"π-反馈"作用的M+-C2H4体系作为LM-C2H4的简化模型进行理论研究是不合适的.LM-C2H4中金属原子M的改变对C=C键长、C2H4电荷布居以及LM与C2H4之间的结合能等性质影响显著.LAu与LCu、LAg相比其接受和反馈电子的能力最强,使C2H4配体π轨道电子密度减少的程度和π*轨道电子密度增加的程度也最大,因此LAu对C2H4中C=C键的活化效果最好.螯合配体取代基供、吸电能力的改变对上述性质的影响则非常有限.  相似文献   

6.
The molecular and electronic structures of trinuclear face-shared [M3X12]3-species of Mo (X = F, Cl, Br, I) and W (X = Cl), containing linear chains of metal atoms, have been investigated using density functional theory. The possibility of variations in structure and bonding has been explored by considering both symmetric (D3d) and unsymmetric (C3v) forms, the latter having one long and one short metal-metal distance. Analysis of the bonding in the structurally characterized [Mo3I12]3- trimer reveals that the metal-metal interaction qualitatively corresponds to a two-electron three-center sigma bond between the Mo atoms and, consequently, a formal Mo-Mo bond order of 0.5. However, the calculated spin densities suggest that the electrons in the metal-metal sigma bond are not fully decoupled and therefore participate in the antiferromagnetic interactions of the metal cluster. Although the same observation applies to [Mo3X12]3- (X = Br, Cl, F) and [W3Cl12]3-, both the spin densities and shorter distances between the metal atoms indicate that the metal-metal interaction is stronger in these systems. The broken-symmetry approach combined with spin projection has been used to determine the energy of the low-lying spin multiplets arising from the magnetic coupling between the metal centers. Either the symmetric and unsymmetric S = 3/2 state is predicted to be the ground state for all five systems. For [Mo3X12]3- (X = Cl, Br, I), the symmetric form is more stable but the unsymmetric structure, where two metal centers are involved in a metal-metal triple bond while the third center is decoupled, lies close in energy and is thermally accessible. Consequently, at room temperature, interconversion between the two energetically equivalent configurations of the unsymmetric form should result in an averaged structure that is symmetric. This prediction is consistent with the reported structure of [Mo3I12]3-, which, although symmetric, indicates significant movement of the central Mo atom toward the terminal Mo atoms on either side. In contrast, unsymmetric structures with a triple bond between two metal centers are predicted for [Mo3F2]3- and [W3C12]3-, as the symmetric structure lies too high in energy to be thermally accessible.  相似文献   

7.
Anion photoelectron spectroscopy and quantum chemical calculations at the density functional theory (DFT), coupled cluster theory (CCSD(T)), and complete active space self-consistent field (CASSCF) theory levels are employed to study the reduced transition metal oxide clusters M(4)O(10)(-) (M = Cr, W) and their neutrals. Photoelectron spectra are obtained at 193 and 157 nm photon energies, revealing very different electronic structures for the Cr versus W oxide clusters. The electron affinity and HOMO-LUMO gap are measured to be 3.68 ± 0.05 and 0.7 eV, respectively, for the Cr(4)O(10) neutral cluster, as compared to 4.41 ± 0.04 and 1.3 eV for W(4)O(10). A comprehensive search is performed to determine the ground-state structures for M(4)O(10) and M(4)O(10)(-), in terms of geometry and electronic states by carefully examining the calculated relative energies at the DFT, CCSD(T), and CASSCF levels. The ground states of Cr(4)O(10) and Cr(4)O(10)(-) have tetrahedral structures similar to that of P(4)O(10) with the anion having a lower symmetry due to a Jahn-Teller distortion. The ground states of W(4)O(10) and W(4)O(10)(-) have butterfly shape structures, featuring two fused five-member rings with a metal-metal multiple bond between the central metal atoms. The much stronger WW bonding than the CrCr bonding is found to be the primary cause for the different ground state structures of the reduced Cr(4)O(10)(0/-) versus W(4)O(10)(0/-) oxide clusters. The photoelectron spectra are assigned by comparing the experimental and theoretical adiabatic and vertical electron detachment energies, further confirming the determination of the ground electronic states of M(4)O(10) and M(4)O(10)(-). The time-dependent DFT method is used to calculate the excitation energies of M(4)O(10). The TD-DFT results in combination with the self-consistently calculated vertical detachment energies for some of the excited states at the DFT and CCSD(T) levels are used to assign the higher energy bands. Accurate clustering energies and heats of formation of M(4)O(10) are calculated and used to calculate accurate reaction energies for the reduction of M(4)O(12) to M(4)O(10) by CH(3)OH, as well as for the oxidation of M(4)O(10) to M(4)O(12) by O(2). The performance of the DFT method with the B3LYP and BP86 functionals in the calculations of the relative energies, electron detachment energies, and excitation energies are evaluated, and the BP86 functional is found to give superior results for most of these energetic properties.  相似文献   

8.
The molecular and electronic structures of mixed-valence face-shared (Cr, Mo, W) d(2)d(3) and (Mn, Tc, Re) d(3)d(4) [M(2)Cl(9)](2-) dimers have been calculated by density functional methods in order to investigate metal-metal bonding in this series. The electronic structures of these systems have been analyzed using potential energy curves for the broken-symmetry and other spin states arising from the d(2)d(3) and d(3)d(4) coupling modes. In (d(2)d(3)) [Mo(2)Cl(9)](2-) and [W(2)Cl(9)](2-), the global minimum has been found to be a spin-doublet state characterized by delocalization of the metal-based electrons in a multiple metal-metal bond (with a formal bond order of 2.5). In contrast, weak coupling between the metal centers and electron localization are favored in (d(2)d(3)) [Cr(2)Cl(9)](2-), the global minimum for this species being a ferromagnetic S = 5/2 state with a relatively long Cr-Cr separation. The (d(3)d(4)) [Re(2)Cl(9)](2-) system also exhibits a global minimum corresponding to a metal-metal bonded spin-doublet state with a formal bond order of 2.5, reflecting the electron-hole equivalence between d(2)d(3) and d(3)d(4) configurations. Double minima behavior is predicted for (d(3)d(4)) [Tc(2)Cl(9)](2-) and [Mn(2)Cl(9)](2-) due to two energetically close low-lying states (these being S = 3/2 and S = 5/2 states for the former, and S = 5/2 and S = 7/2 states for the latter). A comparison of computational results for the d(2)d(2), d(2)d(3), and d(3)d(3) [W(2)Cl(9)](z-) series and the d(3)d(3), d(3)d(4), and d(4)d(4) [Re(2)Cl(9)](z-) series indicates that the observed trends in metal-metal distances can only be rationalized if changes in both the strength of sigma bonding and metal-metal bond order are taken into consideration. These two factors act conjointly in the W series but in opposition to one another in the Re series. In the case of the [Cr(2)Cl(9)](z-) and [Mn(2)Cl(9)](z-) dimers, the metal-metal bond lengths are significantly shorter for mixed-valence (d(2)d(3) or d(3)d(4)) than d(3)d(3) systems. This result is consistent with the fact that some degree of metal-metal bonding exists in the former (due to partial delocalization of a single sigma electron) but not in the latter (where all metal-based electrons are completely localized).  相似文献   

9.
Reaction of 2 molar equiv of the diamine chelated aryllithium dimers Li(2)(C(6)H(4)[CH(2)N(Et)CH(2)CH(2)NEt(2)]-2)(2) (Li(2)Ar(2)) with the appropriate metal bromide allows the synthesis of the first homologous series of monomeric group 11 bromoate complexes of type MLi(2)BrAr(2) (M = Cu (7), Ag (8), Au (9)). Both in the solid state and in solution, the bromocuprate 7 is isostructural with the bromoargentate 8. The crystal structures of 7 and 8 consist of a MLi(2) core, and each of the two aryl ligands bridges via electron-deficient bonding between the group 11 metal and one Li atom (d(C(ipso)-M) = 1.941(4) (mean) and 2.122(4) (mean) A, for 7 and 8, respectively). The bromine atom exclusively bridges between the two lithium atoms. Each of the ortho-CH(2)N(Et)CH(2)CH(2)NEt(2) moieties is N,N'-chelate bonded to one lithium (d(N-Li) = 2.195(5) and 2.182(0) (mean) A for 7 and 2.154(8) and 2.220(1) (mean) A for 8). Although the MLi(2)BrAr(2) compounds are neutral higher-order -ate species, the structure can also be regarded as consisting of a contact ion pair consisting of two ionic fragments, [Li-Br-Li](+) and [Ar(2)M](-), which are interconnected by both Li-N,N'-chelate bonding and a highly polar C(ipso)-Li interaction. On the basis of NMR and cryoscopic studies, the structural features of the bromoaurate 9 are similar to those of 7 and 8. A multinuclear NMR investigation shows that the bonding between the [Li-Br-Li] and [Ar(2)M] moieties is intermediate between ionic and neutral with an almost equally polarized C(ipso)-Li bond in 7, 8, and 9. Similar reactions between M(C(triple bond)N) and 2 molar equiv of LiAr yield the analogous 2:1 cyanoate complexes of type MLi(2)(C(triple bond)N)Ar(2) (M = Ag (10), Au (11)). Multinuclear NMR studies show that the cyanoate complexes 10 and 11 are isostructural with the bromoate complexes 7, 8, and 9. This paper illustrates that these cyanoaurates may serve as excellent model complexes to gain more insight into the structure of 2:1 cyanocuprates in solution.  相似文献   

10.
Density functional theory calculations have been used to investigate the structure and bonding of the d(3)d(3) bioctahedral complexes X(3)V(mu-S(CH(3))(2))(3)VX(3)(2)(-) (X = F(-), Cl(-), OH(-), SH(-), NH(2)(-)). According to geometry optimizations using the broken-symmetry approach and the VWN+B-LYP combination of density functionals, the halide-terminated complexes have a V-V bond order of approximately 2, while complexes featuring OH(-), SH(-), or NH(2)(-) as terminal ligands exhibit full triple bonding between the vanadium atoms. The tendency toward triple bonding in the latter complexes is consistent with an increased covalency of the vanadium-ligand bonds, and the influence of bond covalency is apparent also in the tendency for V-V bond elongation in the complexes with OH(-) and NH(2)(-) terminal ligands. Detailed examination of the composition of molecular orbitals in all of the thioether-bridged V(II) complexes substantiates the conclusion that the strong antiferromagnetic coupling which we have determined for these complexes (-J > 250 cm(-)(1)) is due to direct bonding between metal atoms rather than superexchange through the bridging ligands. As such, these V(II) complexes comprise the first apparent examples of multiple metal-metal bonding in first-transition-row, face-shared dinuclear complexes and are therefore of considerable structural and synthetic interest.  相似文献   

11.
Several tellurometalates of the general formula [MTe(7)](n)()(-) (n = 2, 3) have been isolated as salts of organic cations by reaction of suitable metal sources with polytelluride solutions in DMF. The [HgTe(7)](2)(-) anion has the same structure in both the NEt(4)(+) and the PPh(4)(+) salts except for a minor change in the ligand conformation. The [AgTe(7)](3)(-) and [HgTe(7)](2)(-) anions contain metal atoms coordinated in trigonal-planar fashion to eta(3)-Te(7)(4)(-) ligands. The central Te atom of an eta(3)-Te(7)(4)(-) ligand is coordinated to the metal atom and to two Te atoms in a "T"-shaped geometry consistent with a hypervalent 10 e(-) center. The planar [AuTe(7)](3)(-) anion may best be described as possessing a square-planar Au(III) atom coordinated to an eta(3)-Te(5)(4)(-) ligand and to an eta(1)-Te(2)(2)(-) ligand. The reaction of [NEt(4)](n)()[MTe(7)] (M = Hg, n = 2; M = Au, n = 3) with the activated acetylene dimethyl acetylenedicarboxylate (DMAD) has yielded the products [NEt(4)](n)()[M(Te(2)C(2)(COOCH(3))(2))(2)] (M = Hg, n = 2; M = Au, n = 1). The metal atoms are coordinated to two Te(COOCH(3))C=C(COOCH(3))Te(2)(-) ligands, for M = Hg in a distorted tetrahedral fashion and for M = Au in a square-planar fashion.  相似文献   

12.
Ab initio calculations in the framework of density functional theory (DFT) were performed to study the lowest-energy isomers of noble metal halide clusters M(n)Br(n) and M(n)I(n), for M = Cu, Ag, or Au and n = 1-6. For all species, the most stable structures were found to be cyclic arrangements. Calculated bond lengths and infrared frequencies were compared with the available experimental data. The nature of the ionocovalent bonding was characterized. The stability and fragmentation were also investigated. The present work confirms previous observations on the particular stability of the trimer.  相似文献   

13.
Photoelectron spectroscopy is combined with ab initio calculations to elucidate the structure and chemical bonding of a series of MAl(6)(-) (M = Li, Na, K, Cu, and Au) bimetallic clusters. Well-resolved photoelectron spectra were obtained for MAl(6)(-) (M = Li, Na, Cu, and Au) at several photon energies. The ab initio calculations showed that all of the MAl(6)(-) clusters can be viewed as an M(+) cation interacting with an Al(6)(2-) dianion. Al(6)(2-) was found to possess an O(h) ground-state structure, and all of the MAl(6)(-) clusters possess a C(3v) ground-state structure derived from the O(h) Al(6)(2-). Careful comparison between the photoelectron spectral features and the ab initio one-electron detachment energies allows us to establish firmly the C(3v)ground-state structures for the MAl(6)(-) clusters. A detailed molecular orbital (MO) analysis is conducted for Al(6)(2-) and compared with Al(3)(-). It was shown that Al(6)(2-) can be considered as the fusion of two Al(3)(-) units. We further found that the preferred occupation of those MOs derived from the sums of the empty 2e' MOs of Al(3)(-), rather than those derived from the differences between the occupied 2a(1)' and 2a(2)' ' MOs of Al(3)(-), provides the key bonding interactions for the fusion of the two Al(3)(-) into Al(6)(2-). Because there are only four bonding MOs (one pi and three sigma MOs), an analysis of resonance structures was performed for the O(h)Al(6)(2-). It is shown that every face of the Al(6)(2-) octahedron still possesses both pi- and sigma-aromaticity, analogous to Al(3)(-), and that in fact Al(6)(2-) can be viewed to possess three-dimensional pi- and sigma-aromaticity with a large resonance stabilization.  相似文献   

14.
The ligand dependence of metal-metal bonding in the d(3)d(3) face-shared M(2)X(9)(n-) (M(III) = Cr, Mo, W; M(IV) = Mn, Tc, Re; X = F, Cl, Br, I) dimers has been investigated using density functional theory. In general, significant differences in metal-metal bonding are observed between the fluoride and chloride complexes involving the same metal ion, whereas less dramatic changes occur between the bromide and iodide complexes and minimal differences between the chloride and bromide complexes. For M = Mo, Tc, and Re, change in the halide from F to I results in weaker metal-metal bonding corresponding to a shift from either the triple metal-metal bonded to single bonded case or from the latter to a nonbonded structure. A fragment analysis performed on M(2)X(9)(3-) (M = Mo, W) allowed determination of the metal-metal and metal-bridge contributions to the total bonding energy in the dimer. As the halide changes from F to I, there is a systematic reduction in the total interaction energy of the fragments which can be traced to a progressive destabilization of the metal-bridge interaction because of weaker M-X(bridge) bonding as fluoride is replaced by its heavier congeners. In contrast, the metal-metal interaction remains essentially constant with change in the halide.  相似文献   

15.
Transition metal atom M (M = Cu, Ag, Au) adsorption on CeO(2)(110), a technologically important catalytic support surface, is investigated with density-functional theory within the DFT+U formalism. A set of model configurations was generated by placing M at three surface sites, viz., on top of an O, an O bridge site, and a Ce bridge site. Prior to DFT optimization, small distortions in selected Ce-O distances were imposed to explore the energetics associated with reduction of Ce(4+) to Ce(3+) due to charge transfer to Ce during M adsorption. Charge redistribution is confirmed with spin density isosurfaces and site projected density of states. We demonstrate that Cu and Au atoms can be oxidized to Cu(2+) and Au(2+), although the adsorption energy, E(ads), of Au(2+) is less favorable and, unlike Cu(2+), it has not been experimentally observed. Oxidation of Ag always results in Ag(+). For M adsorption at an O bridge site, E(ads)(2NN) > E(ads)(3NN) > E(ads)(1NN) where NN denotes the nearest neighbor Ce(3+) site relative to M. Alternatively, for M adsorption at a Ce bridge site, E(ads)(3NN) > E(ads)(2NN) > E(ads)(1NN). The adsorption behavior of M on CeO(2) (110) is compared with M adsorption on CeO(2)(111).  相似文献   

16.
The reaction between M(2)Cl(2)(NMe(2))(4), where M = Mo or W, and Hhpp (8 equiv) in a solid-state melt reaction at 150 degrees C yields the compounds M(2)(hpp)(4)Cl(2) 1a (M = Mo) and 1b (M = W), respectively, by the elimination of HNMe(2) [hpp is the anion derived from deprotonation of 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine, Hhpp]. Purification of 1a and 1b is achieved by sublimation of the excess Hhpp and subsequent recrystallization from either CH(2)Cl(2) or CHCl(3) (or CDCl(3)). By single-crystal X-ray crystallography, the structures of 1a and 1b are shown to contain a central paddlewheel-like M(2)(hpp)(4) core with Mo-Mo = 2.1708(8) A (from CH(2)Cl(2)), 2.1574(5) A (from CDCl(3)), W-W = 2.2328(2) A (from CDCl(3)), and M-N = 2.09(1) (av) A. The Cl ligands are axially ligated (linear Cl-M-M-Cl) with abnormally long M-Cl bond distances that, in turn, depend on the presence or absence of hydrogen bonding to chloroform. The quadruply bonded compounds M(2)(hpp)(4), 2a (M = Mo), and 2b (M = W), can be prepared from the reactions between 1,2-M(2)R(2)(NMe(2))(4) compounds, where R = (i)()Bu or p-tolyl, and Hhpp (4 equiv) in benzene by ligand replacement and reductive elimination. The compounds 2a and 2b are readily oxidized, and in chloroform they react to form 1a and 1b, respectively. The electronic structure and bonding in the compounds 1a, 1b, 2a, and 2b have been investigated using gradient corrected density functional theory employing Gaussian 98. The bonding in the M-M quadruply bonded compounds, 2a and 2b, reveals M-M delta(2) HOMOs and extensive mixing of M-M pi and nitrogen ligand lone-pair orbitals in a manner qualitatively similar to that of the M(2)(formamidinates)(4). The calculations indicate that in the chloride compounds, 1a and 1b, the HOMO is strongly M-Cl sigma antibonding and weakly M-M sigma bonding in character. Formally there is a M-M triple bond of configuration pi(4)sigma(2), and the LUMO is the M-M delta orbital. An interesting mixing of M-M and M-Cl pi interactions occurs, and an enlightening analogy emerges between these d(4)-d(4) and d(3)-d(3) dinuclear compounds and the bonding in C(2), C(2)H(2), and C(2)Cl(2), which is interrogated herein by simple theoretical calculations together with the potential bonding in axially ligated compounds where strongly covalent M-X bonds are present. The latter were represented by the model compounds M(2)(hpp)(4)(H)(2). On the basis of calculations, we estimate the reactions M(2)(hpp)(4) + X(2) to give M(2)(hpp)(4)X(2) to be enthalpically favorable for X = Cl but not for X = H. These results are discussed in terms of the recent work of Cotton and Murillo and our attempts to prepare parallel-linked oligomers of the type [[bridge]-[M(2)]-](n)().  相似文献   

17.
Geometrical structures of a series of binary azides M(N3)n (M = elements in groups 3 and 13 (n = 3) and in groups 4 and 14 (n = 4)) were investigated at the B3LYP/6-311+G level of theory. Our calculations found that binary group 3 triazides M(N3)3 (M = Sc, Y, La) and binary group 4 tetraazides M(N3)4 (M = Ti, Zr, Hf) turn out to be stable with all frequencies real having a similar linear M-N-NN structural feature, as previously reported for M(N3)4 (M = Ti, Zr, Hf). However, binary azides of group 13 M(N3)3 (M = B, Al, Ga, In, Tl) and group 14 elements M(N3)4 (C, Si, Ge, Sn, Pb) with bent M-N-NN bond angles differ obviously from binary group 3 and 4 azides in geometrical structure. These facts are mainly explained by the difference in electronic density overlap between the central atom and the alpha-N atoms of the azido groups. Two lone-pair electrons on the sp hybridization alpha-N atoms in the binary group 3 and 4 azides donate electron density into two empty d orbitals of the central transition metal atom and a pair of valence bonding electrons, resulting in the alpha-N atoms acting as a tridentate ligand. The sp2 hybridization alpha-N atoms of the binary group 13 and 14 azides only give one valence electron to form one valence bonding electron pair acting virtually as monodentate donors.  相似文献   

18.
Wang H  Liu Z  Liu C  Zhang D  Lü Z  Geng H  Shuai Z  Zhu D 《Inorganic chemistry》2004,43(13):4091-4098
Three new complexes of the formula M(2)L(2) derived from 2-(4-quinolyl)nitronyl nitroxide (4-QNNN) and M(hfac)(2) [M = Mn(II), Co(II), and Cu(II)], (4-QNNN)(2).[Mn(hfac)(2)](2) (1), (4-QNNN)(2).[Co(hfac)(2)](2).2H(2)O (2), and (4-QNNN)(2).Cu(hfac)(2).Cu'(hfac)(2) (3), were synthesized and characterized structurally as well as magnetically. Complexes 1 and 2 are four-spin complexes with quadrangle geometry, in which both the nitrogen atoms of quinoline rings and oxygen atoms of nitronyl nitroxides are involved in the formation of coordination bonds. For complex 3, however, the nitrogen atoms of quinoline rings are coordinated with Cu(II) ion to afford a three-spin complex, which is further linked to another molecule of Cu(hfac)(2) (referred to as Cu'(hfac)(2)) to form a 1D alternating chain. The magnetic behaviors of the three complexes were investigated. For complex 1, as the nitronyl nitroxides and Mn(II) ions are strongly antiferromagnetically coupled, consequently its temperature dependence of magnetic susceptibility was fitted to the model of spin-dimer with S = 2, yielding the intradimer magnetic exchange constant of J = -0.82 cm(-1). For complex 2, the temperature dependence of the magnetic susceptibility in the T > 50 K region was simulated with the model of two-spin unit with S(1) = 3/2 and S(2) = 1/2, leading to J = -321.9 cm(-1) for the magnetic interaction due to Co(II).O coordination bonding, D = -16.3 cm(-1) (the zero-field splitting parameter), g = 2.26, and zJ = -3.8 cm(-1) for the magnetic interactions between Co(II) ions and nitronyl nitroxides through quinoline rings and those between nitronyl nitroxides due to the short O.O short contacts. The temperature dependence of magnetic susceptibility of 3 was approximately fitted to a model described previously affording J(1) = -6.52 cm(-1) and J(2) = 3.64 cm(-1) for the magnetic interaction between nitronyl nitroxides and Cu(II) ions through the quinoline unit via spin polarization mechanism and the weak O.Cu coordination bonding, respectively.  相似文献   

19.
Of the known trinuclear dipyridylamido complexes of the first-row transition metals, M(3)(dpa)(4)Cl(2) (dpa is the anion of di(2-pyridyl)amine, M = Cr, Co, Ni, Cu), the one-electron-oxidation products of only Cr(3)(dpa)(4)Cl(2) and Co(3)(dpa)(4)Cl(2) have been isolated previously. Here we report one-electron-oxidation products of Ni(3)(dpa)(4)Cl(2) (1) and Cu(3)(dpa)(4)Cl(2) (3): Ni(3)(dpa)(4)(PF(6))(3) (2) and [Cu(3)(dpa)(4)Cl(2)]SbCl(6) (4). While there are no Ni-Ni bonds in 1, the Ni-Ni distances in 2 are 0.15 A shorter than those in 1, very suggestive of metal-metal bonding interactions. In contrast, the oxidation of 3 to 4 is accompanied by a lengthening of the Cu-Cu distances, as expected for an increase in electrostatic charge between positively charged nonbonded metal ions, which is further evidence against Cu-Cu bonding in either 3 or 4. A qualitative model of the electronic structures of all [M(3)(dpa)(4)Cl(2)](n+) (n = 0, 1) compounds is presented and discussed.  相似文献   

20.
A combined experimental and theoretical charge density study on a quintuply bonded dichromium complex, Cr(2)(dipp)(2) (dipp = (Ar)NC(H)N(Ar) and Ar = 2,6-i-Pr(2)-C(6)H(3)), is performed. Two dipp ligands are bridged between two Cr ions; each Cr atom is coordinated to two N atoms of the ligands in a linear fashion. The Cr atom is in a low oxidation state, Cr(I), and in low coordination number condition, which stabilizes a metal-metal multiple bond, in this case, a quintuple bond. Indeed, it gives an ultrashort Cr-Cr bond distance of 1.7492(1) ? in the complex. The bond characterization of such a quintuple bond is undertaken both experimentally by high-resolution single-crystal X-ray diffraction and theoretically by density functional calculation (DFT). Electron densities are depicted via deformation density and Laplacian distributions. Bond characterizations of the complex are presented in terms of topological properties, Fermi hole function, source function (SF), and natural bonding orbital (NBO) analysis. The electron density at the Cr-Cr bond critical point (BCP) is 1.70 e/?(3), quite a high value for metal-metal bonding and mainly contributed from the metal ion itself. The quintuple bond is confirmed with one σ, two π, and two δ interactions by NBO analysis and Fermi hole function. The molecular orbitals (MOs) illustrate that five bonding orbitals are predominantly contributed from the 3d orbitals of the Cr(I) ion. The effective bond order from NBO analysis is 4.60. The detail comparison between experiment and theory will be given. Additionally, three closely related complexes are calculated for systematic comparison.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号