首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Injuries and disease to the central nervous system (CNS) are accompanied by severe consequences, as the adult CNS has very limited capacity to replace the lost neural cells. Different sources of neural stem cells for CNS tissue regeneration exist, including embryonic stem cells (ESCs), fetal stem cells, adult stem cells, and induced pluripotent stem cells (iPSCs), and so on. However, before stem cell therapy can be a viable option for treatments, many issues still need to be resolved, including low viability, lack of control of stem cell fate, and low cell engraftment after transplantation. Though controlling these parameters is extremely challenging, engineering structures that create permissive niches for the transplanted cells, such as the use of biocompatible hydrogels, is a promising approach. This review will focus on highlighting existing hydrogel systems currently being investigated for CNS tissue regeneration, as well as discuss design criteria for hydrogels and methods for manipulating stem cells within hydrogels systems. Finally, the use of these hydrogel systems as carriers for stem cell transplantation in CNS injury and disease models will be discussed.  相似文献   

2.
Nervous system development involves proliferation and cell specification of progenitor cells into neurons and glial cells. Unveiling how this complex process is orchestrated under physiological conditions and deciphering the molecular and cellular changes leading to neurological diseases is mandatory. To date, great efforts have been aimed at identifying gene mutations associated with many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Mutations in the RNA/DNA binding protein Fused in Sarcoma/Translocated in Liposarcoma (FUS/TLS) have been associated with motor neuron degeneration in rodents and humans. Furthermore, increased levels of the wild-type protein can promote neuronal cell death. Despite the well-established causal link between FUS mutations and ALS, its role in neural cells remains elusive. In order to shed new light on FUS functions we studied its role in the control of neural stem progenitor cell (NSPC) properties. Here, we report that human wild-type Fused in Sarcoma (WT FUS), exogenously expressed in mouse embryonic spinal cord-derived NSPCs, was localized in the nucleus, caused cell cycle arrest in G1 phase by affecting cell cycle regulator expression, and strongly reduced neuronal differentiation. Furthermore, the expression of the human mutant form of FUS (P525L-FUS), associated with early-onset ALS, drives the cells preferentially towards a glial lineage, strongly reducing the number of developing neurons. These results provide insight into the involvement of FUS in NSPC proliferation and differentiation into neurons and glia.  相似文献   

3.
Impaired motor and sensory functions are the main features of Charcot–Marie–Tooth disease. Mesenchymal stem cell (MSCs) therapy is one of the possible treatments for this disease. It was assumed that MSCs therapy can improve the contractile properties of the triceps surae (TS) muscles in mice with hereditary peripheral neuropathy. Murine adipose-derived mesenchymal stromal cells (AD-MSCs) were obtained for transplantation into TS muscles of FVB-C-Tg(GFPU)5Nagy/J mice. Three months after AD-MSCs transplantation, animals were subjected to electrophysiological investigations. Parameters of TS muscle tension after intermittent high frequency electrical sciatic nerve stimulations were analyzed. It was found that force of TS muscle tension contraction in animals after AD-MSCs treatment was two-time higher than in untreated mice. Normalized values of force muscle contraction in different phases of electrical stimulation were 0.3 ± 0.01 vs. 0.18 ± 0.01 and 0.26 ± 0.03 vs. 0.13 ± 0.03 for treated and untreated animals, respectively. It is assumed that the two-fold increase in TS muscle strength was caused by stem cell therapy. Apparently, AD-MSCs therapy can promote nerve regeneration and partial restoration of muscle function, and thus can be a potential therapeutic agent for the treatment of peripheral neuropathies.  相似文献   

4.
Chinese Kunming mice (Mus musculus Km), widely used as laboratory animals throughout China, remain very refractory for embryonic stem (ES) cell isolation. The present study was aimed to evaluate the effects of hybridization with 129/Sv mice, and culture media containing fetal bovine serum (FBS) or Knockout serum replacement (KSR) on ES cell isolation from Kunming mice. The results demonstrated that ES cells had been effectively isolated from the hybrid embryos of Kunming and 129/Sv mice using all three media containing 15% FBS, 15% KSR and their mixture of 14% KSR and 1% FBS, individually. These isolated ES cells had maintained in vitro undifferentiated for a long time, exhibiting all features specific for mouse ES cells. In addition, the rates of ES cell isolation in the medium containing 14% KSR and 1% FBS, was 46.67% and significantly higher than those in another two media containing only FBS or KSR (p < 0.05). Contrarily, no ES cell line had been established from Kunming mouse inbred embryos using the same protocols. These results suggested that ES cells with long-term self-renewal ability could be efficiently generated from hybrid embryos of Kunming and 129/Sv mice, and a small volume of FBS was necessary to isolate ES cells in the KSR medium when embryos and early ES cells cultured.  相似文献   

5.
Human gingival mesenchymal stem cells (GMSCs) are derived from migratory neural crest stem cells and have the potential to differentiate into neurons. Metformin can inhibit stem–cell aging and promotes the regeneration and development of neurons. In this study, we investigated the potential of metformin as an enhancer on neuronal differentiation of GMSCs in the growth environment of chitosan hydrogel. The crosslinked chitosan/β–glycerophosphate hydrogel can form a perforated microporous structure that is suitable for cell growth and channels to transport water and macromolecules. GMSCs have powerful osteogenic, adipogenic and chondrogenic abilities in the induction medium supplemented with metformin. After induction in an induction medium supplemented with metformin, Western blot and immunofluorescence results showed that GMSCs differentiated into neuron–like cells with a significantly enhanced expression of neuro–related markers, including Nestin (NES) and β–Tubulin (TUJ1). Proteomics was used to construct protein profiles in neural differentiation, and the results showed that chitosan hydrogels containing metformin promoted the upregulation of neural regeneration–related proteins, including ATP5F1, ATP5J, NADH dehydrogenase (ubiquinone) Fe–S protein 3 (NDUFS3), and Glutamate Dehydrogenase 1 (GLUD1). Our results help to promote the clinical application of stem–cell neural regeneration.  相似文献   

6.
Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra. Several treatments for PD have focused on the management of physical symptoms using dopaminergic agents. However, these treatments induce various adverse effects, including hallucinations and cognitive impairment, owing to non-targeted brain delivery, while alleviating motor symptoms. Furthermore, these therapies are not considered ultimate cures owing to limited brain self-repair and regeneration abilities. In the present study, we aimed to investigate the therapeutic potential of human adipose-derived stem cells (hASCs) using magnetic nanoparticles in a 6-hydroxydopamine (6-OHDA)-induced PD mouse model. We used the Maestro imaging system and magnetic resonance imaging (MRI) for in vivo tracking after transplantation of magnetic nanoparticle-loaded hASCs to the PD mouse model. The Maestro imaging system revealed strong hASCs signals in the brains of PD model mice. In particular, MRI revealed hASCs distribution in the substantia nigra of hASCs-injected PD mice. Behavioral evaluations, including apomorphine-induced rotation and rotarod performance, were significantly recovered in hASCs-injected 6-OHDA induced PD mice when compared with saline-treated counterparts. Herein, we investigated whether hASCs transplantation using magnetic nanoparticles recovered motor functions through targeted brain distribution in a 6-OHDA induced PD mice. These results indicate that magnetic nanoparticle-based hASCs transplantation could be a potential therapeutic strategy in PD.  相似文献   

7.
Endogenous neural stem/progenitor cells (eNSPCs) proliferate and differentiate into neurons and glial cells after spinal cord injury (SCI). We have previously shown that melatonin (MT) plus exercise (Ex) had a synergistic effect on functional recovery after SCI. Thus, we hypothesized that combined therapy including melatonin and exercise might exert a beneficial effect on eNSPCs after SCI. Melatonin was administered twice a day and exercise was performed on a treadmill for 15 min, six days per week for 3 weeks after SCI. Immunohistochemistry and RT-PCR analysis were used to determine cell population for late response, in conjunction with histological examination and motor function test. There was marked improvement in hindlimb function in SCI+MT+Ex group at day 14 and 21 after injury, as documented by the reduced size of the spinal lesion and a higher density of dendritic spines and axons; such functional improvements were associated with increased numbers of BrdU-positive cells. Furthermore, MAP2 was increased in the injured thoracic segment, while GFAP was increased in the cervical segment, along with elevated numbers of BrdU-positive nestin-expressing eNSPCs in the SCI+MT+Ex group. The dendritic spine density was augmented markedly in SCI+MT and SCI+MT+Ex groups. These results suggest a synergistic effect of SCI+MT+Ex might create a microenvironment to facilitate proliferation of eNSPCs to effectively replace injured cells and to improve regeneration in SCI.  相似文献   

8.
The Wilms’ tumor suppressor Wt1 is involved in multiple developmental processes and adult tissue homeostasis. The first phenotypes recognized in Wt1 knockout mice were developmental cardiac and kidney defects. Wt1 expression in the heart has been described in epicardial, endothelial, smooth muscle cells, and fibroblasts. Expression of Wt1 in cardiomyocytes has been suggested but remained a controversial issue, as well as the role of Wt1 in cardiomyocyte development and regeneration after injury. We determined cardiac Wt1 expression during embryonic development, in the adult, and after cardiac injury by quantitative RT-PCR and immunohistochemistry. As in vitro model, phenotypic cardiomyocyte differentiation, i.e., the appearance of rhythmically beating clones from mouse embryonic stem cells (mESCs) and associated changes in gene expression were analyzed. We detected Wt1 in cardiomyocytes from embryonic day (E10.5), the first time point investigated, until adult age. Cardiac Wt1 mRNA levels decreased during embryonic development. In the adult, Wt1 was reactivated in cardiomyocytes 48 h and 3 weeks following myocardial infarction. Wt1 mRNA levels were increased in differentiating mESCs. Overexpression of Wt1(-KTS) and Wt1(+KTS) isoforms in ES cells reduced the fraction of phenotypically cardiomyocyte differentiated clones, which was preceded by a temporary increase in c-kit expression in Wt1(-KTS) transfected ES cell clones and induction of some cardiomyocyte markers. Taken together, Wt1 shows a dynamic expression pattern during cardiomyocyte differentiation and overexpression in ES cells reduces their phenotypical cardiomyocyte differentiation.  相似文献   

9.
Stem cell-based therapeutics are amongst the most promising next-generation therapeutic approaches for the treatment of spinal cord injury (SCI), as they may promote the repair or regeneration of damaged spinal cord tissues. However, preclinical optimization should be performed before clinical application to guarantee safety and therapeutic effect. Here, we investigated the optimal injection route and dose for adult human multipotent neural cells (ahMNCs) from patients with hemorrhagic stroke using an SCI animal model. ahMNCs demonstrate several characteristics associated with neural stem cells (NSCs), including the expression of NSC-specific markers, self-renewal, and multi neural cell lineage differentiation potential. When ahMNCs were transplanted into the lateral ventricle of the SCI animal model, they specifically migrated within 24 h of injection to the damaged spinal cord, where they survived for at least 5 weeks after injection. Although ahMNC transplantation promoted significant locomotor recovery, the injection dose was shown to influence treatment outcomes, with a 1 × 106 (medium) dose of ahMNCs producing significantly better functional recovery than a 3 × 105 (low) dose. There was no significant gain in effect with the 3 × 106 ahMNCs dose. Histological analysis suggested that ahMNCs exert their effects by modulating glial scar formation, neuroprotection, and/or angiogenesis. These data indicate that ahMNCs from patients with hemorrhagic stroke could be used to develop stem cell therapies for SCI and that the indirect injection route could be clinically relevant. Moreover, the optimal transplantation dose of ahMNCs defined in this preclinical study might be helpful in calculating its optimal injection dose for patients with SCI in the future.  相似文献   

10.
We currently lack effective treatments for the devastating loss of neural function associated with spinal cord injury (SCI). In this study, we evaluated a combination therapy comprising human neural stem cells derived from induced pluripotent stem cells (iPSC-NSC), human mesenchymal stem cells (MSC), and a pH-responsive polyacetal–curcumin nanoconjugate (PA-C) that allows the sustained release of curcumin. In vitro analysis demonstrated that PA-C treatment protected iPSC-NSC from oxidative damage in vitro, while MSC co-culture prevented lipopolysaccharide-induced activation of nuclear factor-κB (NF-κB) in iPSC-NSC. Then, we evaluated the combination of PA-C delivery into the intrathecal space in a rat model of contusive SCI with stem cell transplantation. While we failed to observe significant improvements in locomotor function (BBB scale) in treated animals, histological analysis revealed that PA-C-treated or PA-C and iPSC-NSC + MSC-treated animals displayed significantly smaller scars, while PA-C and iPSC-NSC + MSC treatment induced the preservation of β-III Tubulin-positive axons. iPSC-NSC + MSC transplantation fostered the preservation of motoneurons and myelinated tracts, while PA-C treatment polarized microglia into an anti-inflammatory phenotype. Overall, the combination of stem cell transplantation and PA-C treatment confers higher neuroprotective effects compared to individual treatments.  相似文献   

11.
Selection of a specific neural stem/progenitor cells (NSPCs) has attracted broad attention in regenerative medicine for neurological disorders. Here, we report a fluorescent probe, CDg13, and its application for isolating strong neurogenic NSPCs. In comparison to the NSPCs isolated by other biomarkers, CDg13‐stained NSPCs showed higher capability to differentiate into neurons. Target identification revealed that the fluorescence intensity of the probe within cells is inversely proportional to the expression levels of mouse and human Abcg2 transporters. These findings suggest that low Abcg2 expression is a biomarker for neurogenic NSPCs in mouse brain. Furthermore, CDg13 can be used to isolate Abcg2low cells from heterogeneous cell populations.  相似文献   

12.
Neural progenitor cell (NPC) transplantation possesses enormous potential for the treatment of disorders and injuries of the central nervous system, including the replacement of lost cells or the repair of host neural circuity after spinal cord injury (SCI). Importantly, cell-based therapies in this context still require improvements such as increased cell survival and host circuit integration, and we propose the implementation of optogenetics as a solution. Blue-light stimulation of NPCs engineered to ectopically express the excitatory light-sensitive protein channelrhodopsin-2 (ChR2-NPCs) prompted an influx of cations and a subsequent increase in proliferation and differentiation into oligodendrocytes and neurons and the polarization of astrocytes from a pro-inflammatory phenotype to a pro-regenerative/anti-inflammatory phenotype. Moreover, neurons derived from blue-light-stimulated ChR2-NPCs exhibited both increased branching and axon length and improved axon growth in the presence of axonal inhibitory drugs such as lysophosphatidic acid or chondroitin sulfate proteoglycan. Our results highlight the enormous potential of optogenetically stimulated NPCs as a means to increase neuroregeneration and improve cell therapy outcomes for enhancing better engraftments and cell identity upon transplantation in conditions such as SCI.  相似文献   

13.
Type 1 diabetes stem-cell-based therapy is one of the best therapeutic approaches for pancreatic damage treatment due to stem cell tissue regeneration. Epigallocatechin gallate (EGCG) is one of the active components found in green tea. Experimental results suggest that EGCG shows beneficial effects on cell protection. This study explores whether a better pancreatic regeneration therapeutic effect could be found in mesenchymal stem cells pretreated with EGCG compared to stem cells without EGCG pretreatment. A cell model confirmed that adipose-derived stem cells (ADSC) incubated with EGCG increase cell viability under high-glucose (HG) stress. This is due to survival marker p-Akt expression. In an animal model, type 1 diabetes induced the activation of several pathological signals, including islet size reduction, extracellular fibrotic collagen deposition, oxidative stress elevation, survival pathway suppression, apoptosis signaling induction, and Sirt1 antioxidant pathway downregulation. Ordinary ADSC transplantation slightly improved the above pathological signals. Further, EGCG-pretreated ADSC transplantation significantly improved the above pathological conditions. Taken together, EGCG-pretreated ADSCs show clinical potential in the treatment of patients with type 1 diabetes through the regeneration of damaged pancreatic tissues.  相似文献   

14.
Despite the recent explosion of investigations on dental pulp regeneration using various tissue engineering strategies, the translation of the findings from such studies into therapeutic applications has not been properly achieved. The purpose of this scoping review was to systematically review the efficacy of mesenchymal stem cell transplantation for dental pulp regeneration. A literature search was conducted using five electronic databases from their inception to January 2021 and supplemented by hand searches. A total of 17 studies, including two clinical trials and 15 animal studies using orthotopic pulp regeneration models, were included for the review. The risk of bias for the individual studies was assessed. This scoping review demonstrated that the regeneration of vascularized pulp-like tissue was achieved using the stem cell transplantation strategy in animal models. Autologous cell transplantation in two clinical studies also successfully regenerated vascularized vital tissue. Dental pulp stem cell subpopulations, such as mobilized dental pulp stem cells, injectable scaffolds such as atelocollagen, and a granulocyte-colony forming factor, were the most commonly used for pulp regeneration. The overall risk of bias was unclear for animal studies and was moderate or judged to raise some concerns for clinical studies. More high-quality clinical studies are needed to further determine the safety and efficacy of the stem cell transplantation strategy for dental pulp regeneration.  相似文献   

15.
Tuberous sclerosis complex (TSC) is a genetic disorder caused by inactivating mutations in TSC1 (hamartin) or TSC2 (tuberin), crucial negative regulators of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway. TSC affects multiple organs including the brain. The neurologic manifestation is characterized by cortical tubers, subependymal nodules (SEN), and subependymal giant cell astrocytoma (SEGA) in brain. SEGAs may result in hydrocephalus in TSC patients and mTORC1 inhibitors are the current recommended therapy for SEGA. Nevertheless, a major limitation in the research for SEGA is the lack of cell lines or animal models for mechanistic investigations and development of novel therapy. In this study, we generated TSC1-deficient neural cells from spontaneously immortalized mouse astrocytes in an attempt to mimic human SEGA. The TSC1-deficient cells exhibit mTORC1 hyperactivation and characteristics of transition from astrocytes to neural stem/progenitor cell phenotypes. Rapamycin efficiently decreased mTORC1 activity of these TSC1-deficient cells in vitro. In vivo, TSC1-deficient cells could form SEGA-like tumors and Rapamycin treatment decreased tumor growth. Collectively, our study generates a novel SEGA-like cell line that is invaluable for studying mTORC1-driven molecular and pathological alterations in neurologic tissue. These SEGA-like cells also provide opportunities for the development of novel therapeutic strategy for TSC patients with SEGA.  相似文献   

16.
Stem/progenitor cells are promising candidates for the regeneration of parenchyma in acute and chronic renal failure. However, recent data exhibit that survival of stem/progenitor cells after implantation in diseased renal parenchyma is restricted. To elaborate basic parameters improving survival, cell seeding was simulated under advanced in vitro conditions. After isolation, renal stem/progenitor cells were mounted in a polyester interstitium for perfusion culture. During generation of tubules, chemically defined CO2 Independent Medium or Leibovitz’s L-15 Medium was applied. Specimens were then fixed for transmission electron microscopy to analyze morphological features in generated tubules. Fixation in conventional glutaraldehyde (GA) solution shows development of tubules each exhibiting a polarized epithelium, an intact basal lamina and an inconspicuous interstitium. In contrast, special fixation of specimens in GA solution containing cupromeronic blue, ruthenium red or tannic acid unveils previously not visible extracellular matrix. Control experiments elucidate that a comparable extracellular matrix is not present in the interstitium of the matured kidney. Thus, generation of renal tubules in combination with advanced fixation of specimens for electron microscopy demonstrates that development of abnormal features in the newly developed interstitium has to be considered, when repair of renal parenchyma is performed by implantation of stem/progenitor cells.  相似文献   

17.
Increasing attention has been paid to cell-based medicines. Many in vivo and in vitro studies have demonstrated the efficacy of stem cell transplantation for the regeneration of periodontal tissues over the past 20 years. Although positive evidence has accumulated regarding periodontal regeneration using stem cells, the exact mechanism of tissue regeneration is still largely unknown. This review outlines the practicality and emerging problems of stem cell transplantation therapy for periodontal regeneration. In addition, possible solutions to these problems and cell-free treatment are discussed.  相似文献   

18.
Although physical exercise is an effective strategy for treatment of ischemic stroke, the underlying protective mechanisms are still not well understood. It has been recently demonstrated that neural progenitor cells play a vital role in the recovery of neurological function (NF) through differentiation into mature neurons. In the current study, we observed that physical exercise significantly reduced the infarct size and improved damaged neural functional recovery after an ischemic stroke. Furthermore, we found that the treatment not only exhibited a significant increase in the number of neural progenitor cells and neurons but also decreased the apoptotic cells in the peri-infarct region, compared to a control in the absence of exercise. Importantly, the insulin-like growth factor-1 (IGF-1)/Akt signaling pathway was dramatically activated in the peri-infarct region of rats after physical exercise training. Therefore, our findings suggest that physical exercise directly influences the NF recovery process by increasing neural progenitor cell count via activation of the IGF-1/Akt signaling pathway.  相似文献   

19.
A series of swellable ethylene dimethacrylate‐crosslinked poly(2‐hydroxyethyl methacrylate) (PHEMA) sheets of homogeneous (nonporous) structure or with different degrees of swelling and porosities was produced by bulk polymerization in either the absence or the presence of various diluents (porogens). Calculations performed by use of the solubility parameter δ of the reaction components indicate that the solvation conditions of the polymerization system change, depending on the solvating power of the diluent, which thus controls the porosity. Pore volume also seemed to be sensitive to the presence of the linear polymer diluent. Polystyrene (PS) showed, compared with poly(methyl methacrylate) (PMMA), a higher precipitating ability to form porous PHEMA sheets with an increased pore size because of its higher noncompatibility with newly formed crosslinked PHEMA. Given that PHEMA hydrogel is well known for its biocompatibility, it was used here as a potential carrier of cells in transplantation therapies. Attachment and growth of mouse embryonic stem (ES) cells on gelatin‐coated transparent PHEMA hydrogel substrates were examined. Two days after plating, survival and morphology of ES cells were largely similar on both PHEMA hydrogel sheets and in petri dishes as controls. This suggests that PHEMA hydrogels are likely candidates for application in transplantation therapies involving ES cells. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 425–432, 2003  相似文献   

20.
Spinocerebellar ataxia type 3 (SCA3) is characterized by the over-repetitive CAG codon in the ataxin-3 gene (ATXN3), which encodes the mutant ATXN3 protein. The pathological defects of SCA3 such as the impaired aggresomes, autophagy, and the proteasome have been reported previously. To date, no effective treatment is available for SCA3 disease. This study aimed to study anti-excitotoxic effects of n-butylidenephthalide by chemically insulted Purkinje progenitor cells derived from SCA3 iPSCs. We successfully generated Purkinje progenitor cells (PPs) from SCA3 patient-derived iPSCs. The PPs, expressing both neural and Purkinje progenitor’s markers, were acquired after 35 days of differentiation. In comparison with the PPs derived from control iPSCs, SCA3 iPSCs-derived PPs were more sensitive to the excitotoxicity induced by quinolinic acid (QA). The observations of QA-treated SCA3 PPs showing neural degeneration including neurite shrinkage and cell number decrease could be used to quickly and efficiently identify drug candidates. Given that the QA-induced neural cell death of SCA3 PPs was established, the activity of calpain in SCA3 PPs was revealed. Furthermore, the expression of cleaved poly (ADP-ribose) polymerase 1 (PARP1), a marker of apoptotic pathway, and the accumulation of ATXN3 proteolytic fragments were observed. When SCA3 PPs were treated with n-butylidenephthalide (n-BP), upregulated expression of calpain 2 and concurrent decreased level of calpastatin could be reversed, and the overall calpain activity was accordingly suppressed. Such findings reveal that n-BP could not only inhibit the cleavage of ATXN3 but also protect the QA-induced excitotoxicity from the Purkinje progenitor loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号