首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stem cell‐derived products have the potential to represent promising therapeutic approaches for the treatment of a wide range of conditions. Neurodegenerative diseases, like Parkinson's disease or Huntington's disease, neurological disorders, cardiac failure, and blood disorders, among others, may one day be treated using cellular therapies and regenerative medicine approaches based on stem cells. Furthermore, owing to the potential positive impact in healthcare systems, translation of stem cell technologies into clinical applications will bring a broad social and economic advantage worldwide. However, to fully realize this potential, advanced bioprocessing systems are needed to deliver sufficient numbers of cells in compliance with stringent regulatory landscapes and that can be used in a safe and effective manner. This review presents and summarizes recent advancements in the field of stem cell engineering, in particular novel technologies for the interrogation of stem cell fate and systems for the robust manufacturing of cells under standardized, reproducible and strictly controlled conditions. © 2013 Society of Chemical Industry  相似文献   

2.
随着血管内皮祖细胞(endothelial progenitor cell,EPC)研究的深入,EPC的分离、体外培养、鉴定及在血管相关性疾病(如缺血性疾病)和各种肿瘤发生发展中的作用及功能已成为新的研究热点。EPC具有分化功能,增殖能力极强,体外扩增培养速度快,主要存在于外周血、脐血、骨髓中,且容易获取,是干细胞移植疗法理想的种子细胞来源。目前,EPC在治疗心脑血管、肢体缺血性疾病等方面的研究十分活跃,并初步取得了肯定的成果。本文主要就EPC在再生医学中的细胞治疗及基因治疗上的应用作一综述。  相似文献   

3.
BMP-7 has shown inductive potential for in vitro osteogenic differentiation of mesenchymal stem cells, which are an ideal resource for regenerative medicine. Externally applied, recombinant BMP-7 was able to induce the osteogenic differentiation of DPSCs but based on our previous results with BMP-2, we aimed to study the effect of the tetracyclin-inducible BMP-7 expression on these cells. DPSC, mock, and DPSC-BMP-7 cell lines were cultured in the presence or absence of doxycycline, then alkaline phosphatase (ALP) activity, mineralization, and mRNA levels of different osteogenic marker genes were measured. In the DPSC-BMP-7 cell line, the level of BMP-7 mRNA significantly increased in the media supplemented with doxycycline, however, the expression of Runx2 and noggin genes was upregulated only after 21 days of incubation in the osteogenic medium with doxycycline. Moreover, while the examination of ALP activity showed reduced activity in the control medium containing doxycycline, the accumulation of minerals remained unchanged in the cultures. We have found that the induced BMP-7 expression failed to induce osteogenic differentiation of DPSCs. We propose three different mechanisms that may worth investigating for the engineering of expression systems that can be used for the induction of differentiation of mesenchymal stem cells.  相似文献   

4.
Cardiovascular disease is the leading cause of deaths worldwide, claiming an estimated total of 17.9 million lives each year, of which one-third of the people are under the age of 70 years. Since adult cardiomyocytes fail to regenerate, the heart loses the ability to repair itself after an injury, making patients with heart disease suffer from poor prognosis. Pluripotent stem cells have the ability to differentiate into cardiomyocytes in vitro through a well-established process, which is a new advancement in cardiac regeneration therapy. However, pluripotent stem cell-derived cardiomyocytes have certain drawbacks, such as the risk of arrhythmia and immune incompatibility. Thus, amniotic fluid stem cells (AFSCs), a relatively novel source of stem cells, have been exploited for their ability of pluripotent differentiation. In addition, since AFSCs are weakly positive for the major histocompatibility class II molecules, they may have high immune tolerance. In summary, the possibility of development of cardiomyocytes from AFSCs, as well as their transplantation in host cells to produce mechanical contraction, has been discussed. Thus, this review article highlights the progress of AFSC therapy and its application in the treatment of heart diseases in recent years.  相似文献   

5.
Human-induced pluripotent stem cells (hiPSCs) can be applied in patient-specific cell therapy to regenerate lost tissue or organ function. Anisotropic control of the structural organization in the newly generated bone matrix is pivotal for functional reconstruction during bone tissue regeneration. Recently, we revealed that hiPSC-derived osteoblasts (hiPSC-Obs) exhibit preferential alignment and organize in highly ordered bone matrices along a bone-mimetic collagen scaffold, indicating their critical role in regulating the unidirectional cellular arrangement, as well as the structural organization of regenerated bone tissue. However, it remains unclear how hiPSCs exhibit the cell properties required for oriented tissue construction. The present study aimed to characterize the properties of hiPSCs-Obs and those of their focal adhesions (FAs), which mediate the structural relationship between cells and the matrix. Our in vitro anisotropic cell culture system revealed the superior adhesion behavior of hiPSC-Obs, which exhibited accelerated cell proliferation and better cell alignment along the collagen axis compared to normal human osteoblasts. Notably, the oriented collagen scaffold stimulated FA formation along the scaffold collagen orientation. This is the first report of the superior cell adhesion behavior of hiPSC-Obs associated with the promotion of FA assembly along an anisotropic scaffold. These findings suggest a promising role for hiPSCs in enabling anisotropic bone microstructural regeneration.  相似文献   

6.
7.
Tissue and organ failure has induced immense economic and healthcare concerns across the world. Tissue engineering is an interdisciplinary biomedical approach which aims to address the issues intrinsic to organ donation by providing an alternative strategy to tissue and organ transplantation. This review is specifically focused on cartilage tissue. Cartilage defects cannot readily regenerate, and thus research into tissue engineering approaches is relevant as a potential treatment option. Cells, scaffolds, and growth factors are three components that can be utilized to regenerate new tissue, and in particular recent advances in microparticle technology have excellent potential to revolutionize cartilage tissue regeneration. First, microspheres can be used for drug delivery by injecting them into the cartilage tissue or joint space to reduce pain and stimulate regeneration. They can also be used as controlled release systems within tissue engineering constructs. Additionally, microcarriers can act as a surface for stem cells or chondrocytes to adhere to and expand, generating large amounts of cells, which are necessary for clinically relevant cell therapies. Finally, a newer application of microparticles is to form them together into granular hydrogels to act as scaffolds for tissue engineering or to use in bioprinting. Tissue engineering has the potential to revolutionize the space of cartilage regeneration, but additional research is needed to allow for clinical translation. Microparticles are a key enabling technology in this regard.  相似文献   

8.
There are still many challenges to acquire the optimal integration of biomedical materials with the surrounding tissues. Gene coatings on the surface of biomaterials may offer an effective approach to solve the problem. In order to investigate the gene multilayers mediated differentiation of mesenchymal stem cells (MSCs), gene functionalized films of hyaluronic acid (HA) and lipid-DNA complex (LDc) encoding cartilage oligomeric matrix protein (COMP) were constructed in this study via the layer-by-layer self-assembly technique. Characterizations of the HA/DNA multilayered films indicated the successful build-up process. Cells could be directly transfected by gene films and a higher expression could be obtained with the increasing bilayer number. The multilayered films were stable for a long period and DNA could be easily released in an enzymatic condition. Real-time polymerase chain reaction (RT-PCR) assay presented significantly higher (p < 0.01) COMP expression of MSCs cultured with HA/COMP multilayered films. Compared with control groups, the osteogenic gene expression levels of MSCs with HA/COMP multilayered films were down-regulated while the chondrogenic gene expression levels were up-regulated. Similarly, the alkaline phosphatase (ALP) staining and Alizarin red S staining of MSCs with HA/COMP films were weakened while the alcian blue staining was enhanced. These results demonstrated that HA/COMP multilayered films could inhibit osteogenic differentiation and promote chondrogenic differentiation of MSCs, which might provide new insight for physiological ligament-bone healing.  相似文献   

9.
In recent decades, the use of adult multipotent stem cells has paved the way for the identification of new therapeutic approaches for the treatment of monogenic diseases such as Haemophilia A. Being already studied for regenerative purposes, adipose-derived mesenchymal stem cells (Ad-MSCs) are still poorly considered for Haemophilia A cell therapy and their capacity to produce coagulation factor VIII (FVIII) after proper stimulation and without resorting to gene transfection. In this work, Ad-MSCs were in vitro conditioned towards the endothelial lineage, considered to be responsible for coagulation factor production. The cells were cultured in an inductive medium enriched with endothelial growth factors for up to 21 days. In addition to significantly responding to the chemotactic endothelial stimuli, the cell populations started to form capillary-like structures and up-regulated the expression of specific endothelial markers (CD34, PDGFRα, VEGFR2, VE-cadherin, CD31, and vWF). A dot blot protein study detected the presence of FVIII in culture media collected from both unstimulated and stimulated Ad-MSCs. Remarkably, the activated partial thromboplastin time test demonstrated that the clot formation was accelerated, and FVIII activity was enhanced when FVIII deficient plasma was mixed with culture media from the untreated/stimulated Ad-MSCs. Overall, the collected evidence supported a possible Ad-MSC contribution to HA correction via specific stimulation by the endothelial microenvironment and without any need for gene transfection.  相似文献   

10.
Progenitor cells derived from the retinal pigment epithelium (RPECs) have shown promise as therapeutic approaches to degenerative retinal disorders including diabetic retinopathy, age-related macular degeneration and Stargardt disease. However, the degeneration of Bruch’s membrane (BM), the natural substrate for the RPE, has been identified as one of the major limitations for utilizing RPECs. This degeneration leads to decreased support, survival and integration of the transplanted RPECs. It has been proposed that the generation of organized structures of nanofibers, in an attempt to mimic the natural retinal extracellular matrix (ECM) and its unique characteristics, could be utilized to overcome these limitations. Furthermore, nanoparticles could be incorporated to provide a platform for improved drug delivery and sustained release of molecules over several months to years. In addition, the incorporation of tissue-specific genes and stem cells into the nanostructures increased the stability and enhanced transfection efficiency of gene/drug to the posterior segment of the eye. This review discusses available drug delivery systems and combination therapies together with challenges associated with each approach. As the last step, we discuss the application of nanofibrous scaffolds for the implantation of RPE progenitor cells with the aim to enhance cell adhesion and support a functionally polarized RPE monolayer.  相似文献   

11.
12.
The success of regenerative medicine in various clinical applications depends on the appropriate selection of the source of mesenchymal stem cells (MSCs). Indeed, the source conditions, the quality and quantity of MSCs, have an influence on the growth factors, cytokines, extracellular vesicles, and secrete bioactive factors of the regenerative milieu, thus influencing the clinical result. Thus, optimal source selection should harmonize this complex setting and ensure a well-personalized and effective treatment. Mesenchymal stem cells (MSCs) can be obtained from several sources, including bone marrow and adipose tissue, already used in orthopedic regenerative applications. In this sense, for bone, dental, and oral injuries, MSCs could provide an innovative and effective therapy. The present review aims to compare the properties (proliferation, migration, clonogenicity, angiogenic capacity, differentiation potential, and secretome) of MSCs derived from bone marrow, adipose tissue, and dental tissue to enable clinicians to select the best source of MSCs for their clinical application in bone and oral tissue regeneration to delineate new translational perspectives. A review of the literature was conducted using the search engines Web of Science, Pubmed, Scopus, and Google Scholar. An analysis of different publications showed that all sources compared (bone marrow mesenchymal stem cells (BM-MSCs), adipose tissue mesenchymal stem cells (AT-MSCs), and dental tissue mesenchymal stem cells (DT-MSCs)) are good options to promote proper migration and angiogenesis, and they turn out to be useful for gingival, dental pulp, bone, and periodontal regeneration. In particular, DT-MSCs have better proliferation rates and AT and G-MSC sources showed higher clonogenicity. MSCs from bone marrow, widely used in orthopedic regenerative medicine, are preferable for their differentiation ability. Considering all the properties among sources, BM-MSCs, AT-MSCs, and DT-MSCs present as potential candidates for oral and dental regeneration.  相似文献   

13.
Extensive injuries to bone tissue are still considered a significant clinical challenge; therefore, developing new bone tissue engineering (BTE) strategies is still necessary. This work aims to construct and characterize a chitosan-gelatin/hydroxyapatite-based (CG/H) scaffold to provide well-design support for mesenchymal stem cell (MSC) growth and differentiation to osteoblasts. First, the CG/H scaffolds are construct by freeze-drying. Then, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, x-ray diffraction, water uptake, and degradation profiles evaluate the material's surface. In addition, the CG/H morphological, biochemical, and MSC adhesion processes and growth behavior are also assess, indicating reasonable adhesion rates to the surface, low material cytotoxicity, and excellent alkaline phosphatase activity compared to control on the cellular framework. Based on these results, we obtain a highly biocompatible scaffold and that can support osteoblast differentiation. Finally, the in vivo studies demonstrate the CG/H scaffold with MSC adhere is capable of differentiating into osteoblasts, and the application of this scaffold is able to significantly enhance the closure of the bone lesion. Therefore, the CG/H scaffold has potential clinical application for bone regeneration.  相似文献   

14.
The value of bone marrow aspirate concentrates for treatment of human knee cartilage lesions is unclear. Most of the studies were performed with intra-articular injections. However, subchondral bone plays an important role in the progression of osteoarthritis. We investigated by a literature review whether joint, subchondral bone, or/and scaffolds implantation of fresh autologous bone marrow aspirate concentrated (BMAC) containing mesenchymal stem cells (MSCs) would improve osteoarthritis (OA). There is in vivo evidence that suggests that all these different approaches (intra-articular injections, subchondral implantation, scaffolds loaded with BMAC) can improve the patient. This review analyzes the evidence for each different approach to treat OA. We found that the use of intra-articular injections resulted in a significant relief of pain symptoms in the short term and was maintained in 12 months. However, the clinical trials indicate that the application of autologous bone marrow concentrates in combination with scaffolds or in injection in the subchondral bone was superior to intra-articular injection for long-term results. The tendency of MSCs to differentiate into fibrocartilage affecting the outcome was a common issue faced by all the studies when biopsies were performed, except for scaffolds implantation in which some hyaline cartilage was found. The review suggests also that both implantation of subchondral BMAC and scaffolds loaded with BMAC could reduce the need for further surgery.  相似文献   

15.
Mechanotransduction is the process by which physical force is converted into a biochemical signal that is used in development and physiology; meanwhile, it is intended for the ability of cells to sense and respond to mechanical forces by activating intracellular signals transduction pathways and the relative phenotypic adaptation. It encompasses the role of mechanical stimuli for developmental, morphological characteristics, and biological processes in different organs; the response of cells to mechanically induced force is now also emerging as a major determinant of disease. Due to fluid shear stress caused by blood flowing tangentially across the lumen surface, cells of the cardiovascular system are typically exposed to a variety of mechanotransduction. In the body, tissues are continuously exposed to physical forces ranging from compression to strain, which is caused by fluid pressure and compressive forces. Only lately, though, has the importance of how forces shape stem cell differentiation into lineage-committed cells and how mechanical forces can cause or exacerbate disease besides organizing cells into tissues been acknowledged. Mesenchymal stem cells (MSCs) are potent mediators of cardiac repair which can secret a large array of soluble factors that have been shown to play a huge role in tissue repair. Differentiation of MSCs is required to regulate mechanical factors such as fluid shear stress, mechanical strain, and the rigidity of the extracellular matrix through various signaling pathways for their use in regenerative medicine. In the present review, we highlighted mechanical influences on the differentiation of MSCs and the general factors involved in MSCs differentiation. The purpose of this study is to demonstrate the progress that has been achieved in understanding how MSCs perceive and react to their mechanical environment, as well as to highlight areas where more research has been performed in previous studies to fill in the gaps.  相似文献   

16.
Poly(2-hydroxyethyl methacrylate) (pHEMA) as a biomaterial with excellent biocompatibility and cytocompatibility elicits a minimal immunological response from host tissue making it desirable for different biomedical applications. This article seeks to provide an in-depth overview of the properties and biomedical applications of pHEMA for bone tissue regeneration, wound healing, cancer therapy (stimuli and non-stimuli responsive systems), and ophthalmic applications (contact lenses and ocular drug delivery). As this polymer has been widely applied in ophthalmic applications, a specific consideration has been devoted to this field. Pure pHEMA does not possess antimicrobial properties and the site where the biomedical device is employed may be susceptible to microbial infections. Therefore, antimicrobial strategies such as the use of silver nanoparticles, antibiotics, and antimicrobial agents can be utilized to protect against infections. Therefore, the antimicrobial strategies besides the drug delivery applications of pHEMA were covered. With continuous research and advancement in science and technology, the outlook of pHEMA is promising as it will most certainly be utilized in more biomedical applications in the near future. The aim of this review was to bring together state-of-the-art research on pHEMA and their applications.  相似文献   

17.
The ability of dendrimer 2G‐[Si{O(CH2)2N(Me)2+(CH2)2NMe3+(I?)2}]8 (NN16) to transfect a wide range of cell types, as well as the possible biomedical application in direct or indirect inhibition of HIV replication, was investigated. Cells implicated in HIV infection such as primary peripheral blood mononuclear cells (PBMC) and immortalized suspension cells (lymphocytes), primary macrophages and dendritic cells, and immortalized adherent cells (astrocytes and trophoblasts) were analyzed. Dendrimer toxicity was evaluated by mitochondrial activity, cell membrane rupture, release of lactate dehydrogenase, erythrocyte hemolysis, and the effect on global gene expression profiles using whole‐genome human microarrays. Cellular uptake of genetic material was determined using flow cytometry and confocal microscopy. Transfection efficiency and gene knockdown was investigated using dendrimer‐delivered antisense oligonucleotides and small interfering RNA (siRNA). Very little cytotoxicity was detected in a variety of cells relevant to HIV infection and erythrocytes after NN16 dendrimer treatment. Imaging of cellular uptake showed high transfection efficiency of genetic material in all cells tested. Interestingly, NN16 further enhanced the reduction of HIV protein 24 antigen release by antisense oligonucleotides due to improved transfection efficiency. Finally, the dendrimer complexed with siRNA exhibited therapeutic potential by specifically inhibiting cyclooxygenase‐2 gene expression in HIV‐infected nervous system cells. NN16 dendrimers demonstrated the ability to transfect genetic material into a vast array of cells relevant to HIV pathology, combining high efficacy with low toxicity. These results suggest that NN16 dendrimers have the potential to be used as a versatile non‐viral vector for gene therapy against HIV infection.  相似文献   

18.
Regenerative medicine represents a growing hot topic in biomedical sciences, aiming at setting out novel therapeutic strategies to repair or regenerate damaged tissues and organs. For this perspective, human mesenchymal stem cells (hMSCs) play a key role in tissue regeneration, having the potential to differentiate into many cell types, including chondrocytes. Accordingly, in the last few years, researchers have focused on several in vitro strategies to optimize hMSC differentiation protocols, including those relying on epigenetic manipulations that, in turn, lead to the modulation of gene expression patterns. Therefore, in the present study, we investigated the role of the class II histone deacetylase (HDAC) inhibitor, MC1568, in the hMSCs-derived chondrogenesis. The hMSCs we used for this work were the hMSCs obtained from the amniotic fluid, given their greater differentiation capacity. Our preliminary data documented that MC1568 drove both the improvement and acceleration of hMSCs chondrogenic differentiation in vitro, since the differentiation process in MC1568-treated cells took place in about seven days, much less than that normally observed, namely 21 days. Collectively, these preliminary data might shed light on the validity of such a new differentiative protocol, in order to better assess the potential role of the epigenetic modulation in the process of the hypertrophic cartilage formation, which represents the starting point for endochondral ossification.  相似文献   

19.
The chemistry of DNA endows it with certain functional properties that facilitate the generation of self-assembled nanostructures, offering precise control over their geometry and morphology, that can be exploited for advanced biological applications. Despite the structural promise of these materials, their applications are limited owing to lack of functional capability to interact favourably with biological systems, which has been achieved by functional proteins or peptides. Herein, we outline a strategy for functionalizing DNA structures with short-peptides, leading to the formation of DNA-peptide hybrid materials. This proposition offers the opportunity to leverage the unique advantages of each of these bio-molecules, that have far reaching emergent properties in terms of better cellular interactions and uptake, better stability in biological media, an acceptable and programmable immune response and high bioactive molecule loading capacities. We discuss the synthetic strategies for the formation of these materials, namely, solid-phase functionalization and solution-coupling functionalization. We then proceed to highlight selected biological applications of these materials in the domains of cell instruction & molecular recognition, gene delivery, drug delivery and bone & tissue regeneration. We conclude with discussions shedding light on the challenges that these materials pose and offer our insights on future directions of peptide-DNA research for targeted biomedical applications.  相似文献   

20.
The human heart has the least regenerative capabilities among tissues and organs, and heart disease continues to be a leading cause of mortality in the industrialized world with insufficient therapeutic options and poor prognosis. Therefore, developing new therapeutic strategies for heart regeneration is a major goal in modern cardiac biology and medicine. Recent advances in stem cell biology and biotechnologies such as human pluripotent stem cells (hPSCs) and cardiac tissue engineering hold great promise for opening novel paths to heart regeneration and repair for heart disease, although these areas are still in their infancy. In this review, we summarize and discuss the recent progress in cardiac tissue engineering strategies, highlighting stem cell engineering and cardiomyocyte maturation, development of novel functional biomaterials and biofabrication tools, and their therapeutic applications involving drug discovery, disease modeling, and regenerative medicine for heart disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号