首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
将层状的LiNi1/3Co1/3Mn1/3O2锂离子电池正极材料与尖晶石型的LiMn2O4按质量比为2∶98混合烧结,采用X射线衍射(XRD)、循环伏安法(CV)、交流阻抗(EIS)以及充放电测试研究LiMn2O4对LiNi1/3Co1/3Mn1/3O2电化学性能的影响。研究表明混合LiMn2O4有利于提高LiNi1/3Co1/3Mn1/3O2正极材料的首次库仑效率、循环性能和倍率性能,在3.0~4.3 V以1 C循环,首次放电比容量和库仑效率分别为150.3 m Ah/g和85.5%,循环50次后容量保持率为88.9%;在5 C下充放电仍保持136.2 m Ah/g。循环伏安与交流阻抗测试表明混合2%(质量分数)LiMn2O4可以提升材料的可逆性和放电容量,降低电荷转移电阻。  相似文献   

2.
以FeSO4.7H2O,H3PO4,H2O2和NH3.H2O为原料合成纳米化的FePO4.1.5H2O,并将Li2CO3、FePO4.1.5H2O和葡萄糖混合球磨,在800℃下通过碳热还原合成LiFePO4/C。采用X射线衍射(XRD)、扫描电镜(SEM)、循环伏安(CV)和恒电流充放电测试研究了相同温度下,不同合成时间LiFePO4/C样品的结构、形貌及电化学性能。结果表明:在800℃12 h下合成的样品具有最佳的电化学性能,在0.2C(1C=150mAh/g)倍率下放电,首次放电比容量为142.7mAh/g,经过20次充放电循环后容量基本保持不变。  相似文献   

3.
蜂窝结构球形LiFePO4/C的制备及性能   总被引:2,自引:0,他引:2  
李冰  王殿龙 《电池》2007,37(6):422-424
以FeSO4·7H2O、H3PO4和氨水为原料,采用控制结晶法制备前驱体NH4FePO4·H2O,然后与LiCO3、葡萄糖混合,通过高温(800℃)烧结18 h,合成锂离子电池正极材料球形LiFePO4/C.LiFePO4/C二次颗粒为球形蜂窝状结构,具有3.0 V左右的放电电压平台.样品的碳含量为5%,在0.1 C下的首次充、放电比容量分别为163 mAh/g和153 mAh/g,100次循环后的放电比容量为123 mAh/g.  相似文献   

4.
将LiMn2O4和LiCoO2在强力混合机中混合均匀,获得均匀的共混正极材料。通过电化学测试研究了LiMn2O4/LiCoO2两种电极材料混合比例对锂离子电池循环性能的影响,并比较了LiMn2O4与LiCoO2混合前后在常温和高温环境下循环性能的差异。实验结果表明:在LiMn2O4与LiCoO2共混后制得的锂离子电池在常温和高温环境下都具有良好的循环性能。  相似文献   

5.
采用酒精悬浮液法对商用LiFePO4/C进行了La0.6Sr0.4Co O3-δ(LSC)包覆改性,LSC包覆量为1%~5%(质量分数),通过充放电测试、电化学阻抗测试考察了不同包覆配比对材料高倍率放电比容量和循环性能的影响。结果表明,适当含量LSC包覆可提高LiFePO4电池高倍率放电比容量和循环性能,以4%(质量分数)LSC包覆改性的LiFePO4/C作为蓄电池正极材料时,2 C充放电时比容量较改性前提高22%,55次充放电循环后容量损失率减小22.1%,以其替代LiFePO4/C可增大蓄电池容量,延长蓄电池组使用寿命,具有良好的应用前景。  相似文献   

6.
胡国荣  周玉琳  彭忠东  高旭光 《电池》2007,37(5):339-341
以FeSO4、H3PO4和H2O2为原料,通过控制反应温度、pH值、FeSO4与H3PO4的物质的量比等反应条件,合成了前驱体FePO4.在氩气气氛中煅烧FePO4、Li2CO3和葡萄糖的混合物,制备了LiFePO4.充放电测试表明:LiFePO4样品具有3.4 V的放电电压平台,在0.1 C倍率下的首次充放电比容量分别为154.1 mAh/g和146.5 mAh/g.  相似文献   

7.
正尖晶石LiMn2O4的合成与电化学性能研究   总被引:3,自引:0,他引:3  
采用高温固相反应原理合成了LiMn2O4锂离子电池正极材料,研究了合成原料中n(Li)/n(Mn)(摩尔比)和合成温度以及掺杂金属钴元素对合成产物性能和结构的影响,恒电流充放电结果麦明LiMn2O4容量为115~120mAh/g,掺杂钴以后容量下降而循环性能改善,XRD测试分析表明合成产物具有正尖晶石结构;通过进一步优化材料的粒度和电极制备时控制导电剂的加入量,确定了提高LiMn2O4的容量、改善材料循环性能的其他因素.以合成产物为阴极材料,MCMB为阳极材料,组装的18650型锂离子电池的容量达到了1250mAh,循环300次后容量保持70%左右.  相似文献   

8.
以碳凝胶为添加剂,采用熔融浸渍法合成碳包覆的尖晶石型LiMn2O4。通过X射线衍射和扫描电镜对材料的晶体结构和表观形貌进行了分析,结果显示所制备的材料是纯尖晶石结构,碳包覆的LiMn2O4颗粒无团聚现象。室温下,对碳包覆的LiMn2O4进行电化学测试,结果表明:以0.5C、1C、2C倍率进行充放电测试的首次放电比容量分别为119.5、114.7、108.0mAh/g;此外,碳的包覆增强了颗粒间的导电性,减少了LiMn2O4与电解液的接触面积,抑制了Mn的溶解,提高了电池的循环稳定性。交流阻抗测试表明,碳包覆可以降低电极反应过程中的电荷转移电阻。  相似文献   

9.
研究了电动工具、电池车等对安全性和成本要求较高的应用领域所需要的改性尖晶石型LiMn2O4电池正极材料。首先研究了LiMn2O4与LiF混合物的热处理反应过程,采用LiF对预先合成的LiMn2O4进行后处理,并研究了处理温度对材料的比表面积和高温循环性能的影响。结果表明,LiF/LiMn2O4混合体系在500℃以上开始反应,所形成材料的特性发生了明显的变化;热处理温度越高,形成的材料比表面积大幅度减小,由处理前的2.0m2/g减小为1.1m2/g;600℃条件下处理材料的首次比容量为118.1mAh/g,但是循环30次的容量保持率仍然可以达到89%。  相似文献   

10.
锂离子电池高倍率放电性能的影响因素   总被引:2,自引:2,他引:0  
研究了18650型锂离子电池高倍率放电性能的影响因素.使用LiMn2O4/LiCoO2或LiMn2O4/LiNi1/3Co1/3Mn1/3O2的电池的放电容量保持率比使用LiFePO4的电池高;电解液电导率对电池的高倍率放电性能有明显的影响.采用D50=9μm的LiNi1/3co1/3Mn1/3O2、添加导电锂盐的电解液的电池,在25 C倍率下的放电电压平缓,放电容量为1246 mAh,循环性能良好.  相似文献   

11.
正极材料Li_(1-4x)Ti_xFePO_4的合成和电化学性能   总被引:1,自引:0,他引:1  
采用碳热还原法制备了锂离子电池正极材料Li1-4xTixFePO4(x=0、0.005、0.010、0.015、0.020和0.025).采用XRD、SEM、交流阻抗、恒流充放电及循环伏安等方法,研究了材料的结构和电化学性能.Li0.94Ti0.015FePO4的性能较好,0.2 C首次放电比容量为124.02 mAk/g,循环30次后的容量保持率为96.44%.  相似文献   

12.
以市售FoPO4·2 H2O为原料,利用正交实验方法优化碳热还原法制备LiFePO4/C复合正极材料的合成工艺,考察合成温度、原料摩尔比及保温时间等因素对材料形貌及电化学性能的影响,得到最佳工艺组合:合成温度650℃,保温时间16 h,原料摩尔比2∶1∶2.5.按最佳工艺合成的样品0.2 C与1 C时的最大放电比容量可达151.4、141.2mAh/g,振实密度可达1.4 g/cm3,且表现出良好的循环稳定性.  相似文献   

13.
使用LiFePO_4-LiMn_2O_4混合正极的锂离子电池的性能   总被引:1,自引:1,他引:0  
将LiFePO4和Li Mn2O4按78∶9的质量比混合,并用作锂离子电池正极材料。使用该混合正极的14500型电池适宜的充放电电压范围为4.20~2.50 V,在常温下以1.0C循环250次,容量保持率为87.47%;在60℃下以1.0C循环12次,容量保持率为84.62%。电池以100%SOC在60℃下贮存7 d后,容量保持率为82.50%,容量恢复率为89.01%。  相似文献   

14.
使用磷酸铁锂(LiFePO4)和钛酸锂(Li4Ti5O12)做正、负极活性材料,制备锂离子电池,并测试其性能。用三电极法考察不同配比时正负电极充放电电位的变化,并据此确定了电池中正负极的容量配比。性能测试结果表明,所制备的锂离子电池具有优异的循环稳定性,容量发挥好。正负极容量配比1.4时,18650圆柱电池负极钛酸锂的容量发挥为160mAh/g。  相似文献   

15.
研究了不同酸性介质中磷酸铁溶液的电化学反应规律,通过控制体系温度、磷酸铁浓度等条件,制备出适宜的反应体系,基于磷酸铁及磷酸铁锂在液相中的共结晶,研制出新型磷酸铁-磷酸铁锂均相混和结晶物.实验结果表明,磷酸介质中体系的电化学副反应少,且该介质中磷酸铁浓度为0.4 mol/L,电解温度为50℃时,体系亚铁转化率可达27.25%,电流效率为91.13%.X射线衍射光谱法(XRD)实验结果表明,混合结晶产物中含有磷酸铁和磷酸铁锂的晶形结构,且结晶度良好.  相似文献   

16.
LiFePO4锂离子电池的性能测试   总被引:2,自引:0,他引:2  
以改性LiFePO4、包覆碳为电极活性材料,制备了额定容量为1 000mAh的18650型锂离子电池.电池的工作平台电压为3.0~3.3 V;0.5 C循环1 000次后和10 C循环100次后的容量分别为额定容量的90%以上和60%.  相似文献   

17.
以FePO4为铁源、Li2CO3为锂源、聚丙烯为还原剂和碳源,采用一步固相法合成了LiFePO4/C复合材料.研究了铁源FePO4 的颗粒尺寸对复合材料电化学性能的影响.采用X射线衍射(XRD)、扫描电镜(SEM)对合成产物的晶体结构、表面形貌进行了表征和研究,通过充放电测试和电化学阻抗谱(EIS)对材料的电化学性能进行测试和分析.结果表明:FePO4颗粒的大小影响着合成产物颗粒的大小,从而影响了LiFePO4/C的充放电性能.  相似文献   

18.
球形LiFePO4的制备及电化学性能   总被引:7,自引:3,他引:4  
于春洋  夏定国  赵煜娟  王忠丽 《电池》2006,36(6):432-434
以(NH4)3C6H5O7为络合剂,通过控制结晶法制备了球形NH4FePO4.H2O,并研究了反应温度、滴加速度、搅拌速度和反应物浓度等对颗粒形态的影响。以球形NH4FePO4.H2O为前驱体,制备了球形LiFePO4,振实密度达1.08 g/cm3。充放电测试结果表明:样品在0.05C下的首次放电比容量为77.3 mAh/g;在0.05C、0.10C和0.50C下分别循环20次后,样品的放电比容量分别为77.2 mAh/g、54.7 mAh/g和42.7 mAh/g。  相似文献   

19.
高密度球形LiFePO4的合成及性能   总被引:28,自引:3,他引:25  
通过控制结晶法制备球形前驱体FePO_4·xH_2O,经过预烧得到高密度的FePO_4,与Li_2CO_3和葡萄糖均匀混合,采用碳热还原法合成锂离子蓄电池正极材料球形磷酸铁锂(LiFePO_4)。用X光衍射和扫描电镜分析对FePO_4和LiFePO_4的结构进行了表征。充放电测试表明LiFePO_4具有3.4V放电电压平台,在0.1mA/cm2电流密度条件下,首次充电比容量为146.9mAh/g,放电比容量为129.7mAh/g。该球形LiFePO4粉末的振实密度高达1.8g/cm3,首次放电比容量高达233.5mAh/cm3,远高于一般非球形LiFePO_4正极材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号