首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The effects of increasing the extracellular K+ concentration on the capacity to generate action potentials and to contract were tested on unfatigued muscle fibers isolated from frog sartorius muscle. The goal of this study was to investigate further the role of K+ in muscle fatigue by testing whether an increased extracellular K+ concentration in unfatigued muscle fibers causes a decrease in force similar to the decrease observed during fatigue. Resting and action potentials were measured with conventional microelectrodes. Twitch and tetanic force was elicited by field stimulation. At pHo (extracellular pH) 7.8 and 3 mmol K+.L-1 (control), the mean resting potential was -86.6 +/- 1.7 mV (mean +/- SEM) and the mean overshoot of the action potential was 5.6 +/- 2.5 mV. An increased K+ concentration from 3 to 8.0 mmol.L-1 depolarized the sarcolemma to -72.2 +/- 1.4 mV, abolished the overshoot as the peak potential during an action potential was -12.0 +/- 3.9 mV, potentiated the twitch force by 48.0 +/- 5.7%, but did not affect the tetanic force (maximum force) and the ability to maintain a constant force during the plateau phase of a tetanus. An increase to 10 mmol K+.L-1 depolarized the sarcolemma to -70.1 +/- 1.7 mV and caused large decreases in twitch (31.6 +/- 26.1%) and tetanic (74.6 +/- 12.1%) force. Between 3 and 9 mmol K+.L-1, the effects of K+ at pHo 7.2 (a pHo mimicking the change in interstitial pH during fatigue) and 6.4 (a pHo known to inhibit force recovery following fatigue) on resting and action potentials as well as on the twitch and tetanic force were similar to those at pHo 7.8. Above 9 mmol K+.L-1 significant differences were found in the effect of K+ between pHo 7.8 and 7.2 or 6.4. In general, the decrease in peak action potential and twitch and tetanic force occurred at higher K+ concentrations as the pHo was more acidic. The results obtained in this study do not support the hypothesis that an accumulation of K+ at the surface of the sarcolemma is sufficiently large to suppress force development during fatigue. The possibility that the K+ concentration in the T tubules reaches the critical K+ concentration necessary to cause a failure of the excitation-contraction coupling mechanism is discussed.  相似文献   

3.
The effects of pH on the kinetics of fatigue and recovery in frog sartorius muscle were studied to establish whether the pH to which muscles are exposed (extracellular pH) has an effect on both the rate of fatigue development and recovery from fatigue. When frog sartorius muscles were stimulated with short tetanic stimuli at rates varying from 0.2 to 2.0 trains/s, a time- and frequency-dependent decrease in force development was observed, but extracellular pH had comparatively little effect. The recovery of tetanic force was dependent on the extracellular pH. This effect was characterized by a rapid recovery in force at pH 8.0 and an inhibition of recovery at pH 6.4 even when force decreased by only 25% during stimulation. Even when muscles were fatigued at pH 8.0 the rate of force recovery was still very small at pH 6.4. A model is proposed in which a step of the contraction cycle changes from a normal to a fatigued state. The rate of this transition is a function of the stimulation frequency and not pH. The reverse transition, from a fatigued to normal state is pH dependent; i.e., it is inhibited by H+. Measurements of resting and action potentials show that extracellular pH influences these parameters in the fatigue state, but there is no evidence that these changes are directly responsible for the pH-dependent step in the reversal of fatigue.  相似文献   

4.
The normal membrane potential of frog sartorius fibers   总被引:36,自引:0,他引:36  
  相似文献   

5.
Adaptations of the method of Takahashi et al. (1966. J. Gen. Physiol. 50:317-333) were used to test the validity of the one-dimensional diffusion equation for O2 in the resting excised frog sartorius muscle. This equation is: (formula: see text) where x is the distance perpendicular to the muscle surface. t is time, P(x, t) is the partial pressure of O2,D and alpha are the diffusion coefficient and solubility for O2 in the tissue, and Q is the rate of O2 consumption. P(O, t), the time-course of PO2 at one muscle surface, was measured by a micro-oxygen electrode. Transients in the PO2 profile of the muscle were induced by two methods: (a) after an equilibration period, one surface was sealed off by a disc in which the O2 electrode was embedded; (b) when PO2 at this surface reached a steady state, a step change was made in the PO2 at the other surface. With either method, the agreement between the measured P(O, t) and that predicted by the diffusion equation was excellent, making possible the calculation of D and Q. These two methods yielded statistically indistinguishable results, with the following pooled means (+/- SEM): (formula: see text) At each temperature, D was independent of muscle thickness (range, 0.67-1.34 mm). The activation energy (EA) for diffusion of oxygen in muscle was -3.85 kcal/mol, which closely matches the corresponding value in water. Together with absolute values of D in water taken from the literature, the present data imply that (Dmuscle/DH2O) is in the range 0.59-0.69. This value, and that of EA, are in agreement with the theory of Wang (1954, J. Am. Chem. Soc. 76:4755-4763), suggesting that with respects to the diffusion of O2, to a useful approximation, frog skeletal muscle may be considered simply as a homogeneous protein solution.  相似文献   

6.
The effects of fatigue on the membrane conductance of frog sartorius muscle at the resting potential and during an action potential were studied. When muscles were exposed to an extracellular pH of 8.0 the membrane conductance at the resting potential increased during fatigue by about 20% and returned to prefatigue level in about 20 min. The membrane conductance of muscle fibers exposed to pH 6.4 was about three times less than that of pH 8.0 and decreased further during fatigue. Furthermore, the recovery of a normal membrane conductance was slow at pH 6.4. Both the inward, depolarizing and the outward, repolarizing currents during the action potential are reduced in fatigue. In each case the effect is greater at pH 6.4 than at 8.0 and recovery towards normal values is slower at pH 6.4. It is concluded that the ionic conductance of the sarcolemmal membrane at the resting potential and during an action potential are modified by fatigue and that these changes are modulated by pHo.  相似文献   

7.
8.
Isolated frog sartorii were exposed for 30 minutes to HETP—an irreversible anti-cholinesterase, and were then soaked in Ringer's at 15°C. for 16 hours. At the end of the period of soaking the mean resting potential of the muscle fibers was only 29 mv. The decrease in the resting potential of the HETP-treated muscles was accompanied by a loss of potassium and a gain in sodium by the muscles. The effect of anticholinesterases on sodium extrusion was studied by incubating the muscles in a Ringer's containing half of the normal amount of sodium. The muscles respond by extruding sodium against a concentration gradient into the external medium. Sodium extrusion was blocked by prior exposure of the muscle to HETP, and reversibly blocked by exposure to physostigmine. The inhibition of sodium extrusion by physostigmine was correlated with the inhibition of the intracellular cholinesterase. Sodium extrusion was also blocked by high concentrations of 2-methyl-1,4-napthaquinone 8-sulfonic acid and by α-ketoglutarate, which are known to inhibit choline acetylase in vitro. But sodium extrusion was not affected by a third inhibitor of choline acetylase, phenobarbital. Sodium extrusion was unaffected by KCN and partially blocked by IAA. The IAA block was eliminated by the addition of pyruvate. It is concluded that either glycolysis or oxidative metabolism can furnish the energy needed for sodium extrusion.  相似文献   

9.
10.
11.
The development of electric organ spindles of Gymnarchus niloticus has been investigated with respect to the exact time and place of origin and the process of formation of the adult plan. The results are compared with those of Dahlgren ('14). A common primordium for all the electroplates of of a spindle as held by Dahlgren ('14) is not supported by the present work.  相似文献   

12.
13.
1. Diving apnoea in Rana pipiens was initiated by submerging the external nares. As the water level was raised above the frog, both buccal and lung pressure increased by an amount corresponding to the water head. During submergence the external nares remained closed, although the apnoeic period was punctuated by ventilation movements which moved gas between the lungs and buccal cavity. 2. Bilateral section of the ophthalmic nerves did not alter the normal pattern of ventilation in air, although it often resulted in the intake of water into the buccal cavity on submergence. Introduction of water into the buccal cavity, either naturally as in denervates or by injection through a catheter in intact frogs, triggered sustained electromyographical activity in some respiratory muscles. 3. Electroneurograms recorded from the cut peripheral end of an ophthalmic nerve showed that receptors in the external narial region were stimulated by movement of a water meniscus across them. Activity could also be recorded in the ophthalmic nerve in response to water flow past the submerged nares. Punctate stimulation of the narial region confirmed that these receptors were mechanosensitive. 4. Bilateral electrical stimulation of the central ends of cut ophthalmic nerves in lightly anaesthetized frogs caused apnoea with a latency of less than 200 ms. The external nares remained closed throughout the period of stimulation although buccal pressure events, resembling underwater ventilation movements, occurred when stimulation was prolonged.  相似文献   

14.
15.
16.
17.
18.
We have established by radioimmunoprecipitation that tyrosine-DOPA oxidase (TDO, tyrosinase) [EC 1.14.18.1] is first synthesized by frog embryos at the early neurula stage soon after embryonic induction of the neural plate by the underlying chordamesoderm. The DOPA moiety of the enzyme, at the time of its first appearance, is almost inactive enzymatically and can be activated by mild proteolysis (with trypsin). A very large increase in the amount of active DOPA oxidizing enzyme (without trypsinization) is observed at hatching (stage 21), and this is accompanied by melanin deposition in pigment cells. The tyrosine moiety of the enzyme is also partially inactive at the time of first synthesis, but the ratio of active to inactive enzyme remains approximately constant throughout early development. DOPA decarboxylase enzymatic activity is first detected at neurula stage, and this activity is accompanied by the first appearance of catechol amines.  相似文献   

19.
Comparison has been made between innervated and chronically denervated frog sartorius muscle fibers for resting potentials and a number of features of the action potential. Muscles were obtained from force-fed frogs maintained at room temperature for periods up to one year, and were studied with intracellular microelectrodes. Denervated muscles increased in sensitivity to acetylcholine by 100–400-fold. Studies were made in normal Ringer's solution, and in media in which concentrations of K+, Na+, Ca++, and Cl? were altered. The only significant differences noted between the denervated and the innervated fibers were a reduction in the maximum rate of fall of the action potential (ca. 20%) and an increase in the fall time of the active membrane potential (ca. 25%). These differences were present in normal Ringer's solution and remained when the bathing medium was modified. The resting membrane potential of denervated and innervated muscles varied with log [K+]o in exactly the same manner, and followed the theoretical relation proposed by Hodgkin (Proc. Roy. Soc., B, 148: 1–37, ′58), with the term representing the ratio of the sodium to potassium permeabilities assigned a value of 0.01. The results suggest that (a) the resting sodium and potassium permeabilities are reduced proportionately after denervation, since it is known that denervated frog muscle has a smaller potassium permeability, and (b) the mechanism controlling the increase in potassium conductance during the action potential is less available after denervation. Data indicate that the system controlling the sodium permeability is capable of activation to the same extent as in innervated muscles. Muslces which had been allowed to reinnervate did not show the differences presented by the denervated muscles. Innervated and denervated muscles did not show any significant changes in maximum rates of rise or fall of the action potential, nor of the active membrane potential amplitude over a 30 mV range of resting membrane potentials, indicating that the sodium and potassium permeability systems are fully available in frog muscle at membrane potentials larger than ?80 mV.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号