首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Hu Ding  Yi Li  Li-Qun Chen 《Meccanica》2018,53(13):3233-3249
The most important issue in the vibration study of an engineering system is dynamics modeling. Axially moving continua is often discussed without the inertia produced by the rotation of the continua section. The main goal of this paper is to discover the effects of rotary inertia on the free vibration characteristics of an axially moving beam in the sub-critical and super-critical regime. Specifically, an integro-partial-differential nonlinear equation is modeled for the transverse vibration of the moving beam based on the generalized Hamilton principle. Then the effects of rotary inertia on the natural frequencies, the critical speed, post-buckling vibration frequencies are presented. Two kinds of boundary conditions are also compared. In super-critical speed range, the straight configuration of the axially moving beam loses its stability. The buckling configurations are derived from the corresponding nonlinear static equilibrium equation. Then the natural frequencies of the post-buckling vibration of the super-critical moving beam are calculated by using local linearization theory. By comparing the critical speed and the vibration frequencies in the sub-critical and super-critical regime, the effects of the inertia moment due to beam section rotation are investigated. Several interesting phenomena are disclosed. For examples, without rotary inertia, the study overestimates the stability of the axially moving beam. Moreover, the relative differences between the super-critical fundamental frequencies of the two theories may increase with an increasing beam length.  相似文献   

2.
局部裂纹损伤简支梁的曲率模态特性   总被引:1,自引:0,他引:1  
将裂缝损伤简化成矩形凹槽,采用delta函数表示简支梁的裂纹损伤位置,得到了全梁范围内截面转动惯量和单位长度质量的表达式,建立了局部裂缝损伤简支梁的横向自由振动方程.利用摄动方法给出了裂纹摄动项的一般表达式,根据摄动项和完整梁都同时满足边界条件的特点,将一阶和二阶摄动项都表示成完整梁模态的线性组合,结合delta函数的性质,最终获得了受损简支梁的特征值和模态振型的解析表达式.最后,通过数值计算得到结构模态参数,对比了一阶摄动和二阶摄动对计算结果的影响,分析了不同阶固有频率和模态曲率的变动量,为简支梁的损伤监控和检测提供了理论依据.  相似文献   

3.
For the cases of using the finite curved beam elements and taking the effects of both the shear deformation and rotary inertias into consideration, the literature regarding either free or forced vibration analysis of the curved beams is rare. Thus, this paper tries to determine the dynamic responses of a circular curved Timoshenko beam due to a moving load using the curved beam elements. By taking account of the effect of shear deformation and that of rotary inertias due to bending and torsional vibrations, the stiffness matrix and the mass matrix of the curved beam element were obtained from the force–displacement relations and the kinetic energy equations, respectively. Since all the element property matrices for the curved beam element are derived based on the local polar coordinate system (rather than the local Cartesian one), their coefficients are invariant for any curved beam element with constant radius of curvature and subtended angle and one does not need to transform the property matrices of each curved beam element from the local coordinate system to the global one to achieve the overall property matrices for the entire curved beam structure before they are assembled. The availability of the presented approach has been verified by both the existing analytical solutions for the entire continuum curved beam and the numerical solutions for the entire discretized curved beam composed of the conventional straight beam elements based on either the consistent-mass model or the lumped-mass model. In addition to the typical circular curved beams, a hybrid curved beam composed of one curved-beam segment and two identical straight-beam segments subjected to a moving load was also studied. Influence on the dynamic responses of the curved beams of the slenderness ratio, moving-load speed, shear deformation and rotary inertias was investigated.  相似文献   

4.
对输电塔进行合理简化可以提高塔线体系动力学仿真的效率。本文给出自立塔梁柱简化模型的计算方法,并提出利用梁柱简化模型计算方法建立自立塔塔线体系整体模型,同时采用桁梁混合模型建立精细化塔线体系整体模型,对两种模型塔线体系静力特性及振型和固有频率等动力特性进行对比分析。以脱冰工况为例,采用生死单元技术将施加在输电线节点上的集中质量单元杀死来模拟脱冰,实现对塔线体系动力学响应的有限元模拟,研究塔线体系简化模型在动态响应中的适用性。结果表明,两种模型弯曲变形误差小,低阶的振型相同,固有频率值误差小,动力特性基本相同;脱冰工况下,自立塔节点位移和塔材内力时程曲线一致,在提高计算效率的情况下,能有效保证计算精度。  相似文献   

5.
The problem of controlling the vibration of a transversely excited cantilever beam with tip mass is analyzed within the framework of the Euler–Bernoulli beam theory. A sinusoidally varying transverse excitation is applied at the left end of the cantilever beam, while a payload is attached to the free end of the beam. An active control of the transverse vibration based on cubic velocity is studied. Here, cubic velocity feedback law is proposed as a devise to suppress the vibration of the system subjected to primary and subharmonic resonance conditions. Method of multiple scales as one of the perturbation technique is used to reduce the second-order temporal equation into a set of two first-order differential equations that govern the time variation of the amplitude and phase of the response. Then the stability and bifurcation of the system is investigated. Frequency–response curves are obtained numerically for primary and subharmonic resonance conditions for different values of controller gain. The numerical results portrayed that a significant amount of vibration reduction can be obtained actively by using a suitable value of controller gain. The response obtained using method of multiple scales is compared with those obtained by numerically solving the temporal equation of motion and are found to be in good agreement. Numerical simulation for amplitude is also obtained by integrating the equation of motion in the frequency range between 1 and 3. The developed results can be extensively used to suppress the vibration of a transversely excited cantilever beam with tip mass or similar systems actively.  相似文献   

6.
In the paper work, the nonlinear vibration response of functionally graded (FG) Euler–Bernoulli beam resting on elastic foundation is studied. Based on von Kármán’s geometric nonlinearity, the partial differential governing equations describing the nonlinear vibration of FG Euler–Bernoulli beam are derived from Hamilton’s principle and are reduced to an ordinary nonlinear differential equation with quadratic and cubic nonlinear terms via Galerkin’s procedure. Due to unsymmetrical material variation along the thickness of FG beam, the neutral surface concept is proposed to remove the stretching and bending coupling effect and the rotary inertia of the cross section is incorporated to obtain an analytical solution. Numerical results are presented to show the effects of the nonlocal parameters and vibration amplitude on the frequency responses. This results may be useful in design and engineering applications.  相似文献   

7.
The vibrations and dissipative heating of an infinite viscoelastic beam under a moving load are studied on the basis of Timoshenko beam theory. The influence of transverse-shear strain and rotary inertia on the critical velocities of the moving load, the amplitude of bending vibration, and the temperature of dissipative heating is analyzed__________Translated from Prikladnaya Mekhanika, Vol. 41, No. 1, pp. 69–76, January 2005.  相似文献   

8.
The goal of this study is to investigate the vibration characteristics of a stepped laminated composite Timoshenko beam. Based on the first order shear deformation theory, flexural rigidity and transverse shearing rigidity of a laminated beam are determined. In order to account for the effect of shear deformation and rotary inertia of the stepped beam, Timoshenko beam theory is then used to deduce the frequency function. Graphs of the natural frequencies and mode shapes of a T300/970 laminated stepped beam are given, in order to illustrate the influence of step location parameter exerts on the dynamic behavior of the beam.  相似文献   

9.
The present study is concerned with the vibration analysis of symmetric composite beams with a variable fiber volume fraction through thickness. First-order shear deformation and rotary inertia have been included in the analysis. The solution procedure is applicable to arbitrary boundary conditions. Continuous gradation of the fiber volume fraction is modeled in the form of an m-th power polynomial of the coordinate axis in the thickness direction of the beam. By varying the fiber volume fraction within the symmetric composite beam to create a functionally graded material (FGM), certain vibration characteristics are affected. Results are presented to demonstrate the effects of shear deformation, fiber volume fraction, and boundary conditions on the natural frequencies and mode shapes of composite beams.  相似文献   

10.
11.
随着科技不断进步,智能结构的振动控制在航天航空、机械制造、车辆与船舶等领域得到了广泛应用。由于多输入多输出存在多样性和复杂性,严重威胁系统稳定性。为了解决这一问题,针对两输入单输出的双驱动智能悬臂梁系统提出一种自适应控制策略,首先基于压电线性本构方程,应用假设模态方法建立双驱动智能悬臂梁的力学模型,得到了基于闭环控制系统的状态方程,同时利用递推最小二乘法在线辨识系统参数设计比例积分微分(proportional--integral--derivative, PID)控制器实现自校正PID控制。通过数值仿真对比在有无PID 控制下两输入单输出双驱动智能悬臂梁系统的振动情况,分析自校正PID 控制的控制效果。通过实验验证自校正PID 控制对双输入单输出的双驱动智能悬臂梁系统的控制效果;再设置两组不同的单输入单输出自校正PID控制实验作对比。结果表明:自校正PID 控制方法可以较为有效地抑制智能悬臂梁的自由振动,相比单输入单输出的两组,两输入单输出自校正PID控制的效果更为明显和有效。  相似文献   

12.
In this study, free vibration analysis of a rotating, tapered Timoshenko beam that undergoes flapwise bending vibration is performed. Derivation of the equations of motion of a rotating, uniform Timoshenko beam was made step by step in a previous work of the authors. Therefore, differential equations of motion are given directly without making any derivations in this paper. The parameters for the hub radius, rotational speed, taper ratio, rotary inertia, shear deformation and slenderness ratio are incorporated into the equations of motion. In the solution part, an efficient mathematical technique called the Differential Transform Method, DTM, is used. Finally, using the computer package Mathematica, the natural frequencies are calculated and the effects of the incorporated parameters are examined. Moreover, numerical examples are solved to make comparisons with the existing results in open literature and it is observed that the agreement between the results is very good.  相似文献   

13.
The bending and free vibrational behaviors of functionally graded (FG) cylindrical beams with radially and axially varying material inhomogeneities are investigated. Based on a high-order cylindrical beam model, where the shear deformation and rotary inertia are both considered, the two coupled governing differential motion equations for the deflection and rotation are established. The analytical bending solutions for various boundary conditions are derived. In the vibrational analysis of FG cylindrical beams, the two governing equations are firstly changed to a single equation by means of an auxiliary function, and then the vibration mode is expanded into shifted Chebyshev polynomials. Numerical examples are given to investigate the effects of the material gradient indices on the deflections, the stress distributions, and the eigenfrequencies of the cylindrical beams, respectively. By comparing the obtained numerical results with those obtained by the three-dimensional (3D) elasticity theory and the Timoshenko beam theory, the effectiveness of the present approach is verified.  相似文献   

14.
In this study, free vibration analysis of a uniform, rotating, cantilever Timoshenko beam featuring bending?Cbending-torsion coupling is performed. To the best of the authors?? knowledge, there is no explicit formulation in open literature for rotating Timoshenko beams featuring bending?Cbending-torsion coupling. Therefore, in this study, derivation of the kinetic and the potential energy expressions for the mentioned beam model is carried out in a detailed way by using several explanatory tables and figures. The parameters for the hub radius, rotational speed, rotary inertia, shear deformation and bending?Cbending-torsion coupling are incorporated into the energy expressions. The governing differential equations of motion are obtained by applying the Hamilton??s principle to the derived energy expressions and solved using an efficient mathematical technique, called the differential transform method. The natural frequencies are calculated, and comparisons are made with the results in open literature. Consequently, it is observed that there is a good agreement between the results, which validates the accuracy of the derived formulation and the built beam model.  相似文献   

15.
I. INTRODUCTION The shape of some ?ying objects (called workpieces) is similar to that of shafts. These ?ying objectsoften have a large size. Their dispersion e?ect a?ects the ?ying control and the precision in hitting atarget. The dispersion e?ect is the statistical deviation when ?ying objects depart from their preconcerted?ying orbits. As the unevenness of mass distribution is the major cause of the dispersion e?ect, thedouble-plane vertical dynamic balancing technique for ?ying ob…  相似文献   

16.
研究了轴向加速黏弹性Timoshenko梁的非线性参数振动。参数激励是由径向变化张力和轴向速度波动引起的。引入了取决于轴向加速度的径向变化张力,同时还考虑了有限支撑刚度对张力的影响。应用广义哈密尔顿原理建立了Timoshenko梁耦合平面运动的控制方程和相关的边界条件。黏弹性本构关系采用Kelvin模型并引入物质时间导数。耦合方程简化为具有随时间和空间变化系数的积分-偏微分型非线性方程。采用直接多尺度法分析了Timoshenko梁的组合参数共振。根据可解性条件得到了Timoshenko梁的稳态响应,并应用Routh-Hurvitz判据确定了稳态响应的稳定性。最后通过一系列数值例子描述了黏弹性系数、平均轴向速度、剪切变形系数、转动惯量系数、速度脉动幅值、有限支撑刚度参数以及非线性系数对稳态响应的影响。  相似文献   

17.
This paper deals with the free vibration analysis of circular alumina (Al2O3) nanobeams in the presence of surface and thermal effects resting on a Pasternak foun- dation. The system of motion equations is derived using Hamilton's principle under the assumptions of the classical Timoshenko beam theory. The effects of the transverse shear deformation and rotary inertia are also considered within the framework of the mentioned theory. The separation of variables approach is employed to discretize the governing equa- tions which are then solved by an analytical method to obtain the natural frequencies of the alumina nanobeams. The results show that the surface effects lead to an increase in the natural frequency of nanobeams as compared with the classical Timoshenko beam model. In addition, for nanobeams with large diameters, the surface effects may increase the natural frequencies by increasing the thermal effects. Moreover, with regard to the Pasternak elastic foundation, the natural frequencies are increased slightly. The results of the present model are compared with the literature, showing that the present model can capture correctly the surface effects in thermal vibration of nanobeams.  相似文献   

18.
研究梁产生主共振情形下索梁组合结构的1∶1内共振问题。基于斜拉桥中的索梁组合结构模型,忽略索梁纵向惯性力的影响,考虑弯曲刚度、几何非线性及垂度等因素,利用索梁连接处的变形协调条件,采用Hamilton变分原理建立了索梁结构面内耦合非线性偏微分方程,运用Galerkin离散和多尺度法研究了梁主共振情形下索梁的1∶1相互作用问题,获得了内共振时的平均方程和分叉响应曲线方程。以某斜拉桥中索梁结构参数为例,研究了内共振时索梁结构之间的相互影响及时程曲线。结果表明,索容易出现共振情形,并呈现出较强的非线性特点;梁振动对索振动影响显著,索振动对梁振动影响较小;索梁内共振时能量相互交换,索梁振幅呈现此消彼长的现象。  相似文献   

19.
阶梯压电层合梁的波动动力学特性   总被引:2,自引:0,他引:2  
任建亭  姜节胜 《力学学报》2004,36(5):540-548
采用行波理论系统地研究了压电阶梯梁的自由振动分析以及强迫响应的分析方法. 基于分布 参数理论研究了压电阶梯梁的波传播特性,忽略柔性梁横向剪切和转动惯量的影响,给出了 梁的轴向和横向的简谐波解. 将压电阶梯梁离散化为单元,考虑压电片的刚度和质量的影响, 建立了节点散射模型. 应用位移连续和力平衡条件,推导了节点的波反射和波传递矩阵,在 此基础上,引入波循环矩阵的概念,给出波循环矩阵、波传递系数矩阵的确定方法. 应用波 循环矩阵可以有效地计算结构的固有频率. 另外,应用波传递系数研究了压电陶瓷作动器位 置对其驱动能力的影响. 得出两个主要结论:1)作动器靠近悬臂梁固定端将有较强的驱动 能力,悬臂梁边界反射行波产生弯曲消失波有利于增大压电波的模态传递系数;2)模态传 递系数与固有频率的灵敏度密切相关,波传递系数越大, 对应该处固有频率变化灵敏度越大. 另外,数值算例表明了行波方法比有限元方法具有更高的计算精度.  相似文献   

20.
基于时滞加速度反馈控制策略对索-梁组合结构进行振动控制。根据Hamilton原理推导了索-梁组合结构非线性振动控制方程,运用多尺度法得到时滞反馈作用下索-梁组合结构主共振的一阶近似解,得出系统响应与控制参数的关系以及响应峰值和临界激励值与时滞参数的表达式。结果表明,主共振的响应存在多解和跳跃现象,调节控制增益和时滞值,可以有效抑制大幅振动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号