首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Hsu NY  Lee CC  Wang JY  Li YC  Chang HW  Chen CY  Bornehag CG  Wu PC  Sundell J  Su HJ 《Indoor air》2012,22(3):186-199
The associated risk of phthalate exposure, both parent compounds in the home and their metabolites in urine, to childhood allergic and respiratory morbidity, after adjusting for exposures of indoor pollutants, especially bioaerosols, was comprehensively assessed. Levels of five phthalates in settled dust from the homes of 101 children (3-9 years old) were measured, along with their corresponding urinary metabolites. Other environmental risk factors, including indoor CO2, PM2.5, formaldehyde, 1,3-β-D-glucan, endotoxin, allergen and fungal levels, were concomitantly examined. Subject's health status was verified by pediatricians, and parents recorded observed daily symptoms of their children for the week that the home investigation visit took place. Significantly increased level of benzylbutyl phthalate, in settled dust, was associated with test case subjects (allergic or asthmatic children). Higher levels of dibutyl phthalate and its metabolites, mono-n-butyl phthalate, and mono-2-ethylhexyl phthalate were found to be the potential risk factors for the health outcomes of interest. Similarly, indoor fungal exposure remained a significant risk factor, especially for reported respiratory symptoms. The relative contribution from exposure to phthalates and indoor biocontaminants in childhood allergic and respiratory morbidity is, for the first time, quantitatively assessed and characterized. PRACTICAL IMPLICATIONS: For asthmatic and allergic children living in subtropical and highly developed environments like homes in Taiwan, controlling environmental exposure of phthalates may be viewed as equally important as avoiding indoor microbial burdens, for the management of allergy-related diseases. It is also recognized that multidisciplinary efforts will be critical in realizing the true underlying mechanisms associated with these observations.  相似文献   

2.
Identifying air pollutants that pose a potential hazard indoors can facilitate exposure mitigation. In this study, we compiled summary results from 77 published studies reporting measurements of chemical pollutants in residences in the United States and in countries with similar lifestyles. These data were used to calculate representative mid-range and upper-bound concentrations relevant to chronic exposures for 267 pollutants and representative peak concentrations relevant to acute exposures for five activity-associated pollutants. Representative concentrations are compared to available chronic and acute health standards for 97 pollutants. Fifteen pollutants appear to exceed chronic health standards in a large fraction of homes. Nine other pollutants are identified as potential chronic health hazards in a substantial minority of homes, and an additional nine are identified as potential hazards in a very small percentage of homes. Nine pollutants are identified as priority hazards based on the robustness of measured concentration data and the fraction of residences that appear to be impacted: acetaldehyde; acrolein; benzene; 1,3-butadiene; 1,4-dichlorobenzene; formaldehyde; naphthalene; nitrogen dioxide; and PM(2.5). Activity-based emissions are shown to pose potential acute health hazards for PM(2.5), formaldehyde, CO, chloroform, and NO(2). PRACTICAL IMPLICATIONS: This analysis identifies key chemical contaminants of concern in residential indoor air using a comprehensive and consistent hazard-evaluation protocol. The identification of a succinct group of chemical hazards in indoor air will allow for successful risk ranking and mitigation prioritization for the indoor residential environment. This work also indicates some common household activities that may lead to the acute levels of pollutant exposure and identifies hazardous chemicals for priority removal from consumer products and home furnishings.  相似文献   

3.
We reviewed the literature on Indoor Air Quality (IAQ), ventilation, and building-related health problems in schools and identified commonly reported building-related health symptoms involving schools until 1999. We collected existing data on ventilation rates, carbon dioxide (CO2) concentrations and symptom-relevant indoor air contaminants, and evaluated information on causal relationships between pollutant exposures and health symptoms. Reported ventilation and CO2 data strongly indicate that ventilation is inadequate in many classrooms, possibly leading to health symptoms. Adequate ventilation should be a major focus of design or remediation efforts. Total volatile organic compounds, formaldehyde (HCHO) and microbiological contaminants are reported. Low HCHO concentrations were unlikely to cause acute irritant symptoms (<0.05 ppm), but possibly increased risks for allergen sensitivities, chronic irritation, and cancer. Reported microbiological contaminants included allergens in deposited dust, fungi, and bacteria. Levels of specific allergens were sufficient to cause symptoms in allergic occupants. Measurements of airborne bacteria and airborne and surface fungal spores were reported in schoolrooms. Asthma and 'sick building syndrome' symptoms are commonly reported. The few studies investigating causal relationships between health symptoms and exposures to specific pollutants suggest that such symptoms in schools are related to exposures to volatile organic compounds (VOCs), molds and microbial VOCs, and allergens.  相似文献   

4.
The paper presents the results of a study conducted into the relationship between dwelling characteristics and occupant activities with the respiratory health of resident women and children in Lao People's Democratic Republic (PDR). Lao is one of the least developed countries in south-east Asia with poor life expectancies and mortality rates. The study, commissioned by the World Health Organisation, included questionnaires delivered to residents of 356 dwellings in nine Districts in Lao PDR over a five month period (December 2005-April 2006), with the aim of identifying the association between respiratory health and indoor air pollution, in particular exposures related to indoor biomass burning. Adjusted odds ratios were calculated for each health outcome separately using binary logistic regression. After adjusting for age, a wide range of symptoms of respiratory illness in women and children aged 1-4 years were positively associated with a range of indoor exposures related to indoor cooking, including exposure to a fire and location of the cooking place. Among women, “dust always inside the house” and smoking were also identified as strong risk factors for respiratory illness. Other strong risk factors for children, after adjusting for age and gender, included dust and drying clothes inside. This analysis confirms the role of indoor air pollution in the burden of disease among women and children in Lao PDR.  相似文献   

5.
Mendell MJ  Heath GA 《Indoor air》2005,15(1):27-52
To assess whether school environments can adversely affect academic performance, we review scientific evidence relating indoor pollutants and thermal conditions, in schools or other indoor environments, to human performance or attendance. We critically review evidence for direct associations between these aspects of indoor environmental quality (IEQ) and performance or attendance. Secondarily, we summarize, without critique, evidence on indirect connections potentially linking IEQ to performance or attendance. Regarding direct associations, little strongly designed research was available. Persuasive evidence links higher indoor concentrations of NO(2) to reduced school attendance, and suggestive evidence links low ventilation rates to reduced performance. Regarding indirect associations, many studies link indoor dampness and microbiologic pollutants (primarily in homes) to asthma exacerbations and respiratory infections, which in turn have been related to reduced performance and attendance. Also, much evidence links poor IEQ (e.g. low ventilation rate, excess moisture, or formaldehyde) with adverse health effects in children and adults and documents dampness problems and inadequate ventilation as common in schools. Overall, evidence suggests that poor IEQ in schools is common and adversely influences the performance and attendance of students, primarily through health effects from indoor pollutants. Evidence is available to justify (i) immediate actions to assess and improve IEQ in schools and (ii) focused research to guide IEQ improvements in schools. PRACTICAL IMPLICATIONS: There is more justification now for improving IEQ in schools to reduce health risks to students than to reduce performance or attendance risks. However, as IEQ-performance links are likely to operate largely through effects of IEQ on health, IEQ improvements that benefit the health of students are likely to have performance and attendance benefits as well. Immediate actions are warranted in schools to prevent dampness problems, inadequate ventilation, and excess indoor exposures to substances such as NO(2) and formaldehyde. Also, siting of new schools in areas with lower outdoor pollutant levels is preferable.  相似文献   

6.
Volatile Organic Compounds (VOCs) exposure can induce a range of adverse human health effects. To date, however, personal VOCs exposure and residential indoor and outdoor VOCs levels have not been well characterized in the mainland of China, less is known about health risk of personal exposure to VOCs. In this study, personal exposures for 12 participants as well as residential indoor/outdoor, workplace and in vehicle VOCs concentrations were measured simultaneously in Tianjin, China. All VOCs samples were collected using passive samplers for 5 days and were analyzed using Thermal Desorption GC-MS method. U.S. Environmental Protect Agency's Inhalation Unit Risks were used to calculate the inhalation cancer health risk. To assess uncertainty of health risk estimate, Monte Carlo simulation and sensitivity analysis were implemented. Personal exposures were greater than residential indoor exposures as expected with the exception of carbon tetrachloride. Exposure assessment showed modeled and measured concentrations are statistically linearly correlated for all VOCs (P < 0.01) except chloroform, confirming that estimated personal exposure using time-weighted model can provide reasonable estimate of personal inhalation exposure to VOCs. Indoor smoking and recent renovation were identified as two major factors influencing personal exposure based on the time-activity pattern and factor analysis. According to the cancer risk analysis of personal exposure, benzene, chloroform, carbon tetrachloride and 1,3-butadiene had median upper-bound lifetime cancer risks that exceeded the U.S. EPA benchmark of 1 per one million, and benzene presented the highest median risks at about 22 per one million population. The median cumulative cancer risk of personal exposure to 5 VOCs was approximately 44 per million, followed by indoor exposure (37 per million) and in vehicle exposure (36 per million). Sensitivity analysis suggested that improving the accuracy of exposure measurement in further research would advance the health risk assessment.  相似文献   

7.
Wood smoke exposure has been associated with adverse respiratory health outcomes, with much of the current research focused on wood smoke from domestic heating and cooking. This study examined the association between respiratory symptoms and outdoor wood smoke in Launceston, Tasmania, where ~ 30% of homes use wood burners for domestic heating. This ecological study examined data from participants of the 2004 Tasmanian Longitudinal Health Study postal survey and compared the prevalence of respiratory symptoms in Launceston (n = 601) with that in Hobart (n = 1071), a larger Tasmanian city with much less wood smoke. Multivariate logistic regression models were used to investigate the associations of interest while adjusting for gender, atopy, history of allergic disease and current smoking status. There were no significant differences in symptom prevalence between Launceston and Hobart. Two subgroup analyses, which examined participants with pre-existing chronic respiratory disease, and those who reported actively using a wood burner in their home, also did not find significant differences. Any impact of wood smoke on non-specific respiratory symptoms might have been overshadowed by other important determinants of respiratory health, such as vehicle exhaust and tobacco smoking, or were too small to have been detected. However, the lack of detectable differences in symptom prevalence might also reflect the success of regulatory action by local governments to reduce wood smoke emissions in Launceston. The results of other epidemiological studies support an association between ambient wood smoke exposure and adverse respiratory health. Further investigations of wood smoke exposure in Australian settings are needed to investigate the lack of significant associations found in this study, especially studies of indoor air quality and health impacts in children and elderly populations.  相似文献   

8.
L. Mlhave 《Indoor air》1998,8(Z4):87-95
Abstract The Helsinki Declaration and similar national regulations require that the ethical aspects of all intended experimental exposures of humans should be evaluated and found acceptable, using the best available toxicological principles and data. In the low-level exposure ranges of indoor air, very little is known about the principles for such evaluations and few health data exist. This paper discusses principles for such evaluations in relation to experimental exposures of IAQ panels. The acceptability of chemical exposures of human subjects in IAQ research should be based on the following principles, a) Only reversible non-adverse health effects can be accepted. The risk of adverse effects associated with exposure must be documented to be acceptably low. b) Exposures to well-known chemicals or emissions from commercially available sources can be accepted if these sources have a history of many years' problem-free use on the free market and if their use during the experimental exposures corresponds to normally encountered exposures. Studies including exceptional exposures or sensitive subjects should be registered and evaluated by the local ethics committees. c) Exposures to emissions from new types of source can be accepted if the exposures are chemically identified and are below official indoor, outdoor or occupational guidelines for exposures. Procedures for the evaluation of exposures to compounds lacking toxicological data are discussed. These exposures should be registered and evaluated by local ethics committees. d) The selection of subjects must include special pre-tests and defined exclusion criteria to exclude risk groups.  相似文献   

9.
Exposure to airborne particulate matter has a negative effect on respiratory health in both children and adults. The ultrafine fraction of particulate air pollution is of particular interest because of its increased ability to cause oxidative stress and inflammation in the lungs. We reviewed the literature, and to date findings suggest that ultrafine particles (UFPs) may play an important role in triggering asthma symptoms. Furthermore, we believe that indoor UFP exposures may be particularly important because people spend the majority of their time indoors where sources of these contaminants are often present. While several epidemiological studies have examined the respiratory effects of ambient UFP exposures, the relationship between indoor UFP exposures and childhood asthma has yet to be examined in clinical or epidemiological studies. However, the portable instrumentation necessary to conduct such investigations is increasingly available, and we expect that this issue will be addressed in the near future. Therefore, the aim of this article is to provide a general review of UFP toxicity as related to childhood asthma in order to draw attention to a potentially important public health concern. PRACTICAL IMPLICATIONS: A number of indoor sources of ultrafine particles (UFPs) have been identified, but the health effects of indoor UFP exposures remain largely unexplored. The potential respiratory effects of such exposures seem most concerning because these particles are known to cause oxidative stress and inflammation in the lungs. Subsequently, indoor UFP exposures may contribute to the exacerbation of asthma symptoms in susceptible individuals. This paper provides a review of UFP toxicity as related to childhood asthma, and to date evidence suggests that further investigation into the respiratory effects of indoor UFP exposures is warranted.  相似文献   

10.
Human exposures to ultrafine particles (UFP) are poorly characterized given the potential associated health risks. Residences are important sites of exposure. To characterize residential exposures to UFP in some circumstances and to investigate governing factors, seven single-family houses in California were studied during 2007-2009. During multiday periods, time-resolved particle number concentrations were monitored indoors and outdoors and information was acquired concerning occupancy, source-related activities, and building operation. On average, occupants were home for 70% of their time. The geometric mean time-average residential exposure concentration for 21 study subjects was 14,500 particles per cm(3) (GSD = 1.8; arithmetic mean ± standard deviation = 17,000 ± 10,300 particles per cm(3)). The average contribution to residential exposures from indoor episodic sources was 150% of the contribution from particles of outdoor origin. Unvented natural-gas pilot lights contributed up to 19% to exposure for the two households where present. Episodic indoor source activities, most notably cooking, caused the highest peak exposures and most of the variation in exposure among houses. Owing to the importance of indoor sources and variations in the infiltration factor, residential exposure to UFP cannot be characterized by ambient measurements alone. PRACTICAL IMPLICATIONS: Indoor and outdoor sources each contribute to residential ultrafine particle (UFP) concentrations and exposures. Under the conditions investigated, peak exposure concentrations indoors were associated with cooking, using candles, or the use of a furnace. Active particle removal systems can mitigate exposure by reducing the persistence of particles indoors. Eliminating the use of unvented gas pilot lights on cooking appliances could also be beneficial. The study results indicate that characterization of human exposure to UFP, an air pollutant of emerging public health concern, cannot be accomplished without a good understanding of conditions inside residences.  相似文献   

11.

Background

Extensive epidemiological studies have provided evidence of an association between elevated outdoor particulate air pollution and adverse health effects. However, while people typically spend majority of time indoors, there is limited knowledge on airborne indoor particles and on the correlation between the concentrations of indoor particles and health effects. Even insights into the influence of differently sized indoor particles on human health are still rare.

Objective

The association between differentially sized indoor air particles and the development of respiratory diseases was studied for three year aged children.

Methods

Short-term measurements of particle mass and number concentrations were carried out in children's rooms. Information on possible particle sources (smoking habits, type of heating, and traffic) and respiratory outcomes were obtained from questionnaires. Measured indoor particle concentrations were correlated with possible sources of indoor particles and with respiratory health impacts.

Results

Daily smoking, smoking more than 5 cigarettes per day at home and traffic density in front of the window of children's room were found to be related to indoor exposure by particles of different diameters. High indoor particle exposures were associated with an increased risk for the development of obstructive bronchitis and in some extent of non-obstructive bronchitis. The strongest impact was observed for the mass concentration of particles < 1 μm and the number concentration of particles > 0.5 μm. The risk increases still remain significant if tested for stability changing the number of adjustment variables or omitting randomly selected cases, respectively.

Conclusion

Our results show significant associations between indoor particle concentrations and the risks for respiratory diseases in young children. The applied short-term measurements can help to assess the health risks of indoor particles with different sizes within epidemiological studies.  相似文献   

12.
Hotel housekeepers represent a large, low-income, predominantly minority, and high-risk workforce. Little is known about their exposure to chemicals, including volatile organic compounds (VOCs). This study evaluates VOC exposures of housekeepers, sources and factors affecting VOC levels, and provides preliminary estimates of VOC-related health risks. We utilized indoor and personal sampling at two hotels, assessed ventilation, and characterized the VOC composition of cleaning agents. Personal sampling of hotel staff showed a total target VOC concentration of 57 ± 36 µg/m3 (mean ± SD), about twice that of indoor samples. VOCs of greatest health significance included chloroform and formaldehyde. Several workers had exposure to alkanes that could cause non-cancer effects. VOC levels were negatively correlated with estimated air change rates. The composition and concentrations of the tested products and air samples helped identify possible emission sources, which included building sources (for formaldehyde), disinfection by-products in the laundry room, and cleaning products. VOC levels and the derived health risks in this study were at the lower range found in the US buildings. The excess lifetime cancer risk (average of 4.1 × 10−5) still indicates a need to lower exposure by reducing or removing toxic constituents, especially formaldehyde, or by increasing ventilation rates.  相似文献   

13.
Traditionally, houses in the US have been ventilated by passive infiltration in combination with active window opening. However in recent years, the construction quality of residential building envelopes has been improved to reduce infiltration, and the use of windows for ventilation also may have decreased due to a number of factors. Thus, there has been increased interest in engineered ventilation systems for residences. The amount of ventilation provided by an engineered system should be set to protect occupants from unhealthy or objectionable exposures to indoor pollutants, while minimizing energy costs for conditioning incoming air. Determining the correct ventilation rate is a complex task, as there are numerous pollutants of potential concern, each having poorly characterized emission rates, and poorly defined acceptable levels of exposure. One ubiquitous pollutant in residences is formaldehyde. The sources of formaldehyde in new houses are reasonably understood, and there is a large body of literature on human health effects. This report examines the use of formaldehyde as a means of determining ventilation rates and uses existing data on emission rates of formaldehyde in new houses to derive recommended levels. Based on current, widely accepted concentration guidelines for formaldehyde, the minimum and guideline ventilation rates for most new houses are 0.28 and 0.5 air changes per hour, respectively.  相似文献   

14.
Chemical reactions on the surface of building materials can lead to secondary emissions from these materials that influence indoor air quality. Many studies have been made on the physical processes that influence material emissions. However, there are only a few studies on secondary emissions resulting from exposure of building material surfaces to ozone or ultraviolet (UV) irradiation. Therefore, this study was aimed at elaborating on the emission of chemicals resulting from chemical reactions initiated by the exposure of the surface of flooring materials to ozone or UV irradiation. The laboratory tests were conducted to estimate gas-phase emissions from the flooring materials when they were exposed to ozone or various kinds of light irradiation (infrared, sunlight, UV-A and UV-B lamps). The infrared and sunlight lamps significantly increased the temperature of the test specimens and, in turn, increased the emission rate for various organic compounds. The flooring materials used in this study had been treated with UV-cured surface coatings during their manufacturing. As a result, when exposed to UV irradiation, chemical transformations occurred resulting in the emission of a number of secondary products, including formaldehyde, acetaldehyde, cyclohexanone and benzaldehyde. Ozone reacted with chemicals present in the flooring materials to increase the emission rates of formaldehyde and acetaldehyde. Hence, the exposure of ozone and UV irradiation increased the secondary emissions of formaldehyde, even though the low formaldehyde emission type of flooring material was employed.  相似文献   

15.
Qualitative reporting of home indoor moisture problems predicts respiratory diseases. However, causal agents underlying such qualitative markers remain unknown. In the homes of 198 multiple allergic case children and 202 controls in Sweden, we cultivated culturable fungi by directly plating dust, and quantified (1‐3, 1‐6)‐β‐d ‐glucan and ergosterol in dust samples from the child's bedroom. We examined the relationship between these fungal agents and degree of parent or inspector‐reported home indoor dampness, and microbiological laboratory's mold index. We also compared the concentrations of these agents between multiple allergic cases and healthy controls, as well as IgE‐sensitization among cases. The concentrations of culturable fungal agents were comparable between houses with parent and inspector‐reported mold issues and those without. There were no differences in concentrations of the individual or the total summed culturable fungi, (1‐3, 1‐6)‐β‐d ‐glucan, and ergosterol between the controls and the multiple allergic case children, or individual diagnosis of asthma, rhinitis, or eczema. Culturable fungi, (1‐3, 1‐6)‐β‐d ‐glucan, and ergosterol in dust were not associated with qualitative markers of indoor dampness or mold or indoor humidity. Furthermore, these agents in dust samples were not associated with any health outcomes in the children.  相似文献   

16.
为科学指导室内装饰装修选材,以实现对室内装饰装修项目完工后室内环境中甲醛有效的控制,本文重点研究了国内外应用气候舱法测量木质家具中甲醛释放量的相关检测标准,并在此基础上探讨了影响甲醛释放的相关环境因素,从而得出根据小型气候舱测试木制家具系统各组件甲醛释放量结果推算木制家具早期投入使用时室内甲醛浓度参数的计算模型,为木制家具甲醛测试方法的应用与工程选材提供了参考。  相似文献   

17.
儿童身体健康受室内环境的影响很大,本论文对上海市某小学106位四、五年级的儿童是否患有呼吸道、过敏性等疾病以及其居住环境,生活方式等状况进行了问卷调查。利用统计分析的方法对调查数据分析,调查结果发现,儿童平均每天在家的时间为14h,患有呼吸道、过敏性等疾病的儿童比例较大,患有一种或一种以上症状的比例为58.5%。通过患病案例组与对照组的对比分析,应用非参数分析及单变量逻辑回归分析,在儿童患呼吸道、过敏性疾病的可能危险因素中,发现案例组和对照组的通风情况,清洁频率,家人健康情况有显著差异;P值分别为0.171,0.179,0.004;危险比分别为4,2.293,4.9。  相似文献   

18.
污染物接触量是用以衡量环境污染对人类健康影响的指标之一。调查结果显示,香港居民日常生活主要在各类室内环境,特别是居住建筑中度过,其室内空气污染对居民健康构成威胁。本文的研究首先选择了多间香港不同类型居住建筑,对其室内PM10、CO、NO2等主要室内污染物浓度进行监测,并分析了室内、外PM10浓度与居民室内各种活动等其它有关因素之间的相关关系。其次,结合香港居民日常时间安排调查的结果,计算出各种室内污染物的接触量,对居住建筑室内环境污染对居民健康的影响进行了初步评估。  相似文献   

19.
A review of the emission of VOCs from polymeric materials used in buildings   总被引:6,自引:0,他引:6  
Building and furnishing materials and consumers products are important sources of formaldehyde and other volatile organic compounds (VOCs) in the indoor environment. The emission from materials is usually continuous and may last for many years in a building. The available evidence indicates that VOCs can cause adverse health effects to the building occupants and may contribute to symptoms of ‘Sick Building Syndrome’.

Control of VOC emission should increasingly become an important consideration for the design and manufacture of polymeric materials used in buildings. The EC Construction Products Directive ‘Essential Requirements’ set a framework for limiting the use of materials that could pose a health risk to building occupants. Furthermore, the on-going development of voluntary labelling schemes and data bases of material emissions that could be used by building designers, should further strengthen the demand for ‘low VOC emitting’ products.

This paper reviews available information about the emission of VOCs from polymeric building materials, the level of emissions in the indoor environment and the requirements for testing of the materials.  相似文献   


20.
Qian Z  He Q  Kong L  Xu F  Wei F  Chapman RS  Chen W  Edwards RD  Bascom R 《Indoor air》2007,17(2):135-142
Diverse indoor combustion sources contribute to the indoor air environment. To evaluate the effect of these sources on human respiratory health, we examined associations between respiratory conditions and household factors in the 2360 children's fathers (mean = 38.4 years old) and associations between lung function and household factors in 463 primary school children (mean = 8.3 years old) from Wuhan, China. Factor analysis developed new uncorrelated 'factor' variables. Unconditional logistic regression models or linear regression models, controlling for important covariates, estimated the respiratory health effects. Coal smoke derived from home heating ('heating coal smoke') was associated with high adult reporting of persistent cough, persistent phlegm, and wheeze. Cooking coal smoke was associated with physician-diagnosed adult asthma and decreased forced vital capacity (FVC), and forced expiratory volume at 1 s (FEV(1)) in children. The presence of any home cigarette smoker was associated with more reports of persistent cough, persistent phlegm, cough with phlegm, and bronchitis. Our study suggests that in Wuhan, there may be independent respiratory health effects of different indoor combustion sources and their exposure factors for these study populations. PRACTICAL IMPLICATIONS: We conclude that multiple indoor air pollution sources could have adverse respiratory health effects on both children and middle-aged men in the city of Wuhan, China. These results may have implications for the Wuhan local government, the Chinese government, or other related organizations in efforts on protecting public health through regulation of indoor air pollution from indoor combustion sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号