首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The action of reducing, oxidizing and thiol-alkylating agents on early steps of Junin virus (JV) multiplication in Vero cells was investigated. The presence of reducing agents during virus adsorption as well as incubation of viral particles with these compounds before infection enhanced JV infectivity. On the contrary, the thiol-alkylating agent 5,5' dithiobis (2-nitrobenzoic acid) and the oxidizing compound potassium periodate showed an inhibitory effect, suggesting that sulfhydryl groups, and certain sugar moieties of viral glycoproteins play an important role in the first steps of JV infection. Also enzymatic treatment of cell monolayers and addition of concanavalin A to cultures prior to infection suggest that cellular glycoproteins are involved in virus attachment.  相似文献   

2.
Previous studies of human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein-mediated membrane fusion have focused on laboratory-adapted T-lymphotropic strains of the virus. The goal of this study was to characterize membrane fusion mediated by a primary HIV-1 isolate in comparison with a laboratory-adapted strain. To this end, a new fusion assay was developed on the basis of the principle of resonance energy transfer, using HeLa cells stably transfected with gp120/gp41 from the T-lymphotropic isolate HIV-1LA1 or the macrophage-tropic primary isolate HIV-1JR-FL. These cells fused with CD4+ target cell lines with a tropism mirroring that of infection by the two viruses. Of particular note, HeLa cells expressing HIV-1JR-FL gp120/gp41 fused only with PM1 cells, a clonal derivative of HUT 78, and not with other T-cell or macrophage cell lines. These results demonstrate that the envelope glycoproteins of these strains play a major role in mediating viral tropism. Despite significant differences exhibited by HIV-1JR-FL and HIV-1LAI in terms of tropism and sensitivity to neutralization by CD4-based proteins, the present study found that membrane fusion mediated by the envelope glycoproteins of these viruses had remarkably similar properties. In particular, the degree and kinetics of membrane fusion were similar, fusion occurred at neutral pH and was dependent on the presence of divalent cations. Inhibition of HIV-1JR-FL envelope glycoprotein-mediated membrane fusion by soluble CD4 and CD4-IgG2 occurred at concentrations similar to those required to neutralize this virus. Interestingly, higher concentrations of these agents were required to inhibit HIV-1LAI envelope glycoprotein-mediated membrane fusion, in contrast to the greater sensitivity of HIV-1LAI virions to neutralization by soluble CD4 and CD4-IgG2. This finding suggests that the mechanisms of fusion inhibition and neutralization of HIV-1 are distinct.  相似文献   

3.
A comparative investigation was performed on the process of attachment of adenovirus type 2 to HeLa cells cultivated in the presence of 3.5% fetal bovine serum (FBS-cells) or 2% Ultroser G (USG-cells). The initial rates of virus attachment were markedly higher at temperatures between 10 and 35 degrees C for the virus binding to USG-cells than to FBS-cells. This was not caused by a higher amount of available virus-recognizing cellular receptor sites or cellular receptor units recognizing the viral fiber, but could be explained by a higher affinity of virions for USG-cells as compared to FBS-cells. Studies of virus attachment to cells, pretreated with neuraminidase and/or wheat germ agglutinin, suggested that the cellular receptor sites of FBS-cells were masked to a higher extent by sialic acid than the cellular receptor sites of USG-cells.  相似文献   

4.
It has been proposed that the pathogenicity of Sendai virus is primarily determined by a host cellular protease(s) that activates viral infectivity by proteolytic cleavage of envelope fusion glycoproteins. We isolated a trypsin-like serine protease, tryptase Clara, localized in and secreted from Clara cells of the bronchial epithelium of rats. The enzyme specifically cleaved the precursor of fusion glycoprotein F0 of Sendai virus at residue Arg116 in the consensus cleavage motif, Gln(Glu)-X-Arg, resulting in the presentation of the membrane fusion domain in the amino-terminus of the F1 subunit. Administration of an antibody against tryptase Clara in the airway significantly inhibited the activation of progeny virus and multiple cycles of viral replication, thus reducing the mortality rate. These findings indicate that tryptase Clara in the airway is a primary determinant of Sendai virus infection and that proteolytic activation occurs extracellularly. We identified two cellular inhibitory compounds against tryptase Clara in bronchial lavage. One was a mucus protease inhibitor, a major serine protease inhibitor of granulocyte elastase in the lining fluids of the human respiratory tract, and the other was a pulmonary surfactant which may adsorb the enzyme, resulting in its inactivation. These compounds inhibited virus activation by tryptase Clara in vitro and in vivo, but did not themselves affect the hemagglutination and the infectivity of the virus. The functional domain of the mucus protease inhibitor against the enzyme, which is organized in two homologous N- and C-terminal domains, is located in the C-terminal. Administration of these compounds in the airway may be useful for preventing infection with Sendai virus.  相似文献   

5.
Oxidative stress and interleukins in seminal plasma during leukocytospermia   总被引:1,自引:0,他引:1  
Various roles for the viral receptor, CD4, have been proposed in facilitating human immunodeficiency virus type 1 (HIV-1) entry, including virion binding to the target cell and the induction of conformational changes in the viral envelope glycoproteins required for the membrane fusion reaction. Here, we compare the structural requirements in the CDR2-like loop of CD4 domain 1, the major contact site of the gp120 envelope glycoprotein, for gp120 binding and virus entry. For every CD4 mutant examined, the level of cell surface expression and the gp120 binding affinity were sufficient to explain the relative ability to function as a viral receptor. The decrease in relative infectibility associated with decreased gp120 binding affinity was more pronounced at lower cell surface CD4 concentrations. These results imply that both receptor density and affinity determine the efficiency of HIV-1 entry and that specific structures in the CD4 residues examined are probably not required for HIV-1 entry functions other than gp120 binding.  相似文献   

6.
CD4+ cells derived from the human cell lines U87MG and SCL1 cannot be infected by human immunodeficiency virus type 1 (HIV-1) or fuse with cells expressing the HIV-1 envelope. This block was complemented in heterokaryons with HeLa cells and probably reflects the absence of cellular factors necessary for membrane fusion. Since U87MG cells expressing CD4 are permissive to HIV-2, distinct cellular factors could be required for fusion mediated by two related human retroviruses.  相似文献   

7.
Four new monoclonal antibodies (MAbs) that inhibit human T-cell lymphotropic virus type 1 (HTLV-1)-induced syncytium formation were produced by immunizing BALB/c mice with HTLV-1-infected MT2 cells. Immunoprecipitation studies and binding assays of transfected mouse cells showed that these MAbs recognize class II major histocompatibility complex (MHC) molecules. Previously produced anti-class II MHC antibodies also blocked HTLV-1-induced cell fusion. Coimmunoprecipitation and competitive MAb binding studies indicated that class II MHC molecules and HTLV-1 envelope glycoproteins are not associated in infected cells. Anti-MHC antibodies had no effect on human immunodeficiency virus type 1 (HIV-1) syncytium formation by cells coinfected with HIV-1 and HTLV-1, ruling out a generalized disruption of cell membrane function by the antibodies. High expression of MHC molecules suggested that steric effects of bound anti-MHC antibodies might explain their inhibition of HTLV-1 fusion. An anti-class I MHC antibody and a polyclonal antibody consisting of several nonblocking MAbs against other molecules bound to MT2 cells at levels similar to those of class II MHC antibodies, and they also blocked HTLV-1 syncytium formation. Dose-response experiments showed that inhibition of HTLV-1 syncytium formation correlated with levels of antibody bound to the surface of infected cells. The results show that HTLV-1 syncytium formation can be blocked by protein crowding or steric effects caused by large numbers of immunoglobulin molecules bound to the surface of infected cells and have implications for the structure of the cellular HTLV-1 receptor(s).  相似文献   

8.
Endogenous expression of antisense RNA in transfected cells has been explored for use in blocking cellular gene expression and for its antiviral potential. Antisense strategies were used with the goal of blocking measles virus (MV) infection. A recombinant expression plasmid was designed to produce antisense oligonucleotides targeted to the 5' end of the MV nucleocapsid protein mRNA. This construct was transfected into HeLa cells. The transfected cell line and a control cell line expressing a random RNA comprising the same nucleotides were infected with MV and assessed for viral resistance by observation of cytopathic effect (CPE); infectious virus was quantified by viral plaque assay. Both cell lines were also infected with a related paramyxovirus, mumps virus, as a specificity control. Both CPE and infectious virus were reduced by approximately 90% in the antisense-expressing line compared with that in control cells or transfectant cells expressing random RNA. There was no evidence of resistance to infection with mumps virus in any cell line.  相似文献   

9.
10.
We constructed a sensitive and quantitative assay system to examine human T-cell leukemia virus type I (HTLV-I) envelope (env) glycoprotein-mediated cell fusion in which T7 RNA polymerase in donor cells coexpressing env glycoproteins activates a reporter gene in recipient cells upon cell fusion. An efficient expression of HTLV-I env glycoproteins (gp46 and gp21) was observed in 293T cells transfected with an expression plasmid by both immunoblot and immunofluorescence analyses. The cells expressing env glycoproteins also exhibited self-fusion. By cocultivating the donor cells with recipient cells transfected with a reporter plasmid possessing the luciferase gene under the T7 promoter, the expression of luciferase was observed upon cell fusion. The activation of the luciferase gene was inhibited by either anti-env neutralizing antibody or synthetic peptide corresponding to env gp21, thus indicating the cell fusion to be specifically mediated by the HTLV-I env glycoproteins expressed in the donor cells. A broad range of cell lines exhibited susceptibility to HTLV-I env-mediated cell fusion by this assay. This newly established assay system may thus provide an efficient way both to study the fusion mechanisms mediated by HTLV-I env glycoproteins and to identify the HTLV-I receptor(s).  相似文献   

11.
12.
A hammerhead ribozyme retroviral construct, denoted RRz2, targeting the coding region of the human immunodeficiency virus type 1 (HIV-1) tat gene, has shown itself to be effective in a range of test systems. Inhibition of the replication of HIV-1 IIIB and primary drug-resistant strains in pooled transduced CEMT4 cells was consistently found to be more than 80% compared with the control-vector transduced cells, whereas a mutant RRz2 gave approximately 45% inhibition. A multiple HIV-1 passage assay showed the absence of emergence of mutations within the specific viral RNA ribozyme target sequences. This lack of generation of ribozyme "escape mutants" occurred despite the almost complete disappearance of a HIV-1 quasi-species in the testing virus. When RRz2 was tested in peripheral blood lymphocytes (PBLs) from HIV-1-infected patients, paired analysis showed that cell viability in the ribozyme-transduced HIV-1-infected PBLs was significantly higher than that in the vector-transduced cells. This difference in viability (vector versus RRz2) was not observed in PBLs from non-HIV-1-infected donors. Taken together, these results indicate that the transfer of an anti-HIV-1 ribozyme gene into human T lymphocytes could have major impact on viral replication and T cell viability in the HIV-1-infected individual.  相似文献   

13.
The putative envelope glycoproteins of hepatitis C virus (HCV) likely play an important role in the initiation of viral infection. Available information suggests that the genomic regions encoding the putative envelope glycoproteins, when expressed as recombinant proteins in mammalian cells, largely accumulate in the endoplasmic reticulum. In this study, genomic regions which include the putative ectodomain of the E1 (amino acids 174 to 359) and E2 (amino acids 371 to 742) glycoproteins were appended to the transmembrane domain and cytoplasmic tail of vesicular stomatitis virus (VSV) G protein. This provided a membrane anchor signal and the VSV incorporation signal at the carboxy termini of the E1 and E2 glycoproteins. The chimeric gene constructs exhibited expression of the recombinant proteins on the cell surface in a transient expression assay. When infected with a temperature-sensitive VSV mutant (ts045) and grown at the nonpermissive temperature (40.5 degrees C), cells transiently expressing the E1 or E2 chimeric glycoprotein generated VSV/HCV pseudotyped virus. The resulting pseudotyped virus generated from E1 or E2 surprisingly exhibited the ability to infect mammalian cells and sera derived from chimpanzees immunized with the homologous HCV envelope glycoproteins neutralized pseudotyped virus infectivity. Results from this study suggested a potential functional role for both the E1 and E2 glycoproteins in the infectivity of VSV/HCV pseudotyped virus in mammalian cells. These observations further suggest the importance of using both viral glycoproteins in a candidate subunit vaccine and the potential for using a VSV/HCV pseudotyped virus to determine HCV neutralizing antibodies.  相似文献   

14.
The cellular slime mold, Dictyostelium discoideum, is a convenient model for studying cellular interactions during development. Evidence that specific cell surface components are involved in cellular interactions during its development has been obtained by Gerisch and co-workers (1, 2) using immunological techniques. Smart and Hynes (3) have shown that a cell surface protein can be iodinated on cells in aggregation phase, but not in vegetative phase, by the lactoperoxidase procedure. Recently, McMahon et al. (4), and Hoffman and McMahon have demonstrated, by SDS gel electrophoresis, considerable differences in cell surface proteins and glycoproteins of plasma membranes isolated from cells at different stages of development. Plant lectins have also been used to monitor changes in cell surface properties of D. discoideum cells during development. Weeks and co-workers (5, 6) have detected differences in the binding and agglutination of cells by concanavalin A (Con A). Gillette and Filosa (7) have shown that Con A inhibits cell aggregation and prematurely induces cyclic AMP phosphodiesterase. Capping of Con A receptors has also been reported (8). Reitherman et al. (9) have recently reported that agglutination of cells by several plant lectins and the slime mold agglutination, discoidin, changes during development. Such studies indicate that differences in surface properties exist for cells at various stages of development. However, owing to the uncertainties in the factors which contribute to lectin-induced cell agglutination (10), the molecular basis for these observations remain to be determined. In this study, we have used microspheres (11-14) coupled to either Con A or wheat germ agglutinin (WGA) as visual markers to study by scanning electron microscopy the topographical distribution of lectin receptors on D. discoideum cells fixed at different stages of development. We also describe the effect of labeling on the distribution of lectin receptors and on the morphology of the cell surface.  相似文献   

15.
Concanavalin A (Con A), a lectin binding to mannosyl and glucosyl residues of glycoproteins and glycolipids, was used to study the appearance of carbohydrate-rich cell surface material on the olfactory placode and nasal processes which contribute to formidine was also used in an attempt to correlate changes in labeling index with formation of the olfactory placode and nasal processes. The cell surface of the early frontonasal epithelium binds Con A very little, if at all, but Con A binding was observed when the olfactory placode could be identified as a plate of cuboidal cells that exhibited a reduced labeling index. During the period of formation of the nasal processes, Con A binding was observed on the facial epithelium including the presumptive contact region. There was also a decline in the labeling index throughout primary palate formation. This study provides three criteria by which the olfactory placode can be identified: a morphological change of placode cells to a cuboidal shape, a synthesis or rearrangement of surface coat material that binds Con A, and a reduced labeling index.  相似文献   

16.
The E1B 55-kDa oncoprotein of adenovirus enables the virus to overcome restrictions imposed on viral replication by the cell cycle. Approximately 20% of HeLa cells infected with an E1B 55-kDa mutant adenovirus produced virus when evaluated by electron microscopy or by assays for infectious centers. By contrast, all HeLa cells infected with a wild-type adenovirus produced virus. The yield of E1B mutant virus from randomly cycling HeLa cells correlated with the fraction of cells in S phase at the time of infection. In synchronously growing HeLa cells, approximately 75% of the cells infected during S phase with the E1B mutant virus produced virus, whereas only 10% of the cells infected during G1 produced virus. The yield of E1B mutant virus from HeLa cells infected during S phase was sevenfold greater than that of cells infected during G1 and threefold greater than that of cells infected during asynchronous growth. Cells infected during S phase with the E1B mutant virus exhibited severe cytopathic effects, whereas cells infected with the E1B mutant virus during G1 exhibited a mild cytopathic effect. Viral DNA synthesis appeared independent of the cell cycle because equivalent amounts of viral DNA were synthesized in cells infected with either wild-type or E1B mutant virus. The inability of the E1B mutant virus to replicate was not mediated by the status of p53. These results define a novel property of the large tumor antigen of adenovirus in relieving growth restrictions imposed on viral replication by the cell cycle.  相似文献   

17.
M2, an acid-activated ion channel, is an influenza A virus membrane protein required for efficient nucleocapsid release after viral fusion with the endosomal membrane. Recombinant M2 slows protein traffic through the Golgi complex (Sakaguchi, T., Leser, G. P)., and Lamb, R. A. (1996) J. Cell Biol. 133, 733-47). Despite its critical role in viral infection, little is known about the subcellular distribution of M2 or its fate following delivery to the plasma membrane (PM). We measured the kinetics of M2 transport in HeLa cells, and found that active M2 reached the PM considerably more slowly than inactive M2. In addition, M2 delayed intra-Golgi transport and cell surface delivery of influenza hemagglutinin (HA). We hypothesized that the effects of M2 on transport through non-acidified compartments are due to inefficient retrieval from the trans-Golgi of machinery required for intra-Golgi transport. In support of this, acutely activated M2 had no effect on intra-Golgi transport of HA, but still slowed HA delivery to the PM. Thus, M2 has an indirect effect on early transport steps, but a direct effect on late steps in PM delivery. These findings may help explain the conflicting and unexplained effects on protein traffic observed with other perturbants of intraorganelle pH such as weak bases and inhibitors of V-type ATPases.  相似文献   

18.
Directional cellular locomotion is thought to involve localized intracellular calcium changes and the lateral transport of cell surface molecules. We have examined the roles of both calcium and cell surface glycoprotein redistribution in the directional migration of two murine fibroblastic cell lines, NIH 3T3 and SV101. These cell types exhibit persistent, cathode directed motility when exposed to direct current electric fields. Using time lapse phase contrast microscopy and image analysis, we have determined that electric field-directed locomotion in each cell type is a calcium independent process. Both exhibit cathode directed motility in the absence of extracellular calcium, and electric fields cause no detectable elevations or gradients of cytosolic free calcium. We find evidence suggesting that galvanotaxis in these cells involves the lateral redistribution of plasma membrane glycoproteins. Electric fields cause the lateral migration of plasma membrane concanavalin A receptors toward the cathode in both NIH 3T3 and SV101 fibroblasts. Exposure of directionally migrating cells to Con A inhibits the normal change of cell direction following a reversal of electric field polarity. Additionally, when cells are plated on Con A-coated substrata so that Con A receptors mediate cell-substratum adhesion, cathode-directed locomotion and a cathodal accumulation of Con A receptors are observed. Immunofluorescent labeling of the fibronectin receptor in NIH 3T3 fibroblasts suggests the recruitment of integrins from large clusters to form a more diffuse distribution toward the cathode in field-treated cells. Our results indicate that the mechanism of electric field directed locomotion in NIH 3T3 and SV101 fibroblasts involves the lateral redistribution of plasma membrane glycoproteins involved in cell-substratum adhesion.  相似文献   

19.
We describe the development of the baculovirus Autographa californica nuclear polyhedrosis virus (AcNPV) as a vector for the display of distinct proteins on the viral surface in a manner that is analogous to the established bacterial "phage display" systems. As a model system, the marker gene encoding the 26kDa protein glutathione-S-transferase (GST) was used to construct several fusions with the major baculovirus glycoprotein gp64 gene. Following expression in Spodoptera frugiperda (Sf9) cells, the yield and cellular distribution of each GST-gp64 protein was assessed by Western blot of both cell and supernatant fractions. One fusion, in which GST was inserted between the leader peptide and the nature protein, was found to be efficiently secreted into the cell medium. In the context of expression of the full length gp64, the hybrid GST-gp64 was shown by immunogold labelling to be incorporated onto the virion surface. In addition, the affinity purification of the soluble transmembrane gp64-GST fusion protein resulted in the co-purification of wild type gp64 suggesting that co-oligomerization of the GST-tagged fusion and the wild type molecule was the basis for virion incorporation. The HIV major surface glycoprotein, gp120 was also efficiently displayed in functional form on the viral surface following fusion to the amino terminus of gp64. A general expression vector, pAcSurf-2, was constructed in which multiple cloning sites were positioned in-phase between the gp64 signal sequence and the sequence encoding the mature protein under the control of the polyhedrin promoter.  相似文献   

20.
The Rep proteins encoded by the adeno-associated virus type 2 (AAV) play a crucial role in the rescue, replication, and integration of the viral genome. In the absence of a helper virus, little expression of the AAV Rep proteins occurs, and the AAV genome fails to undergo DNA replication. Since previous studies have established that expression of the Rep78 and Rep68 proteins from the viral p5 promoter is controlled by the Rep-binding site (RBS) and the YY1 factor-binding site (YBS), we constructed a number of recombinant AAV plasmids containing mutations and/or deletions of the RBS and the YBS in the p5 promoter. These plasmids were transfected in HeLa or 293 cells and analyzed for the potential to undergo AAV DNA rescue and replication. Our studies revealed that (i) a low-level rescue and autonomous replication of the wild-type AAV genome occurred in 293 but not in HeLa cells; (ii) mutations in the RBS resulted in augmented expression from the p5 promoter, leading to more efficient rescue and/or replication of the AAV genome in 293 but not in HeLa cells; (iii) little rescue and/or replication occurred from plasmids containing mutations in the YBS alone in the absence of coinfection with adenovirus; (iv) expression of the adenovirus E1A gene products was insufficient to mediate rescue and/or replication of the AAV genome in HeLa cells; (v) autonomously replicated AAV genomes in 293 cells were successfully encapsidated in mature progeny virions that were biologically active in secondary infection of HeLa cells in the presence of adenovirus; and (vi) stable transfection of recombinant AAV plasmids containing a gene for resistance to neomycin significantly affected stable integration only in 293 cells, presumably because rescue and autonomous replication of the AAV genome from these plasmids occurred in 293 cells but not in HeLa or KB cells. These data suggest that in the absence of adenovirus, the AAV Rep protein-RBS interaction plays a dominant role in down-regulating viral gene expression from the p5 promoter and that perturbation in this interaction is sufficient to confer autonomous replication competence to AAV in 293 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号