首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Evaluation of leaching and extraction procedures for soil and waste   总被引:1,自引:1,他引:0  
Laboratory leaching tests may be used for source term determination as a basis for risk assessment for soil-groundwater pathways on contaminated sites. In order to evaluate different leaching procedures, batch extraction tests and percolation tests were performed using three reference materials produced from contaminated soil, demolition waste and municipal solid waste incinerator bottom ash. Emphasis was placed on the investigation of the leachability of the heavy metals copper and chromium, polycyclic aromatic hydrocarbons (PAHs) and the anions chloride and sulfate. Significant discrepancies between column experiments and batch/extraction tests were found for the release of PAHs and to a lesser extent for the heavy metals Cu and Cr. Additionally interlaboratory comparisons were conducted based on different leaching tests with the reference materials and evaluated using the criteria of comparability and reproducibility. The best reproducibility was achieved for all investigated substances in column tests. The reproducibility of batch tests was acceptable except for PAHs. The results from the experimental work will help establish standardized and feasible laboratory procedures as fundamental for substance specific risk assessment of contaminated sites.  相似文献   

2.
Batch leaching tests and simulated landfill lysimeter tests were performed to evaluate the contents of heavy metals leached from spent batteries in the municipal solid waste. The toxicity characteristic leaching procedure was utilized to perform the batch leaching tests of 36 spent batteries. Four lysimeters were prepared with battery contents ranging from 0% to 100% by weight for column tests, and the experiments were performed at ambient temperature. The age of all the batteries used in the study ranged from freshly disposed up to approximately 3 years old. The results from the batch tests showed that the type of battery influenced the heavy metal concentrations in the leached solutions. The lysimeter experiment results illustrated that at lower pH levels more metals are leached than at higher pH levels. The increasing amount of batteries disposed in landfills can contribute to the leaching of more metals, especially Mn and Zn, into the environment. These results indicate that the direct disposal of spent household batteries into a MSW landfill can increase the heavy metal contents in the landfill leachate.  相似文献   

3.
The leaching potential of heavy metals from a roadway embankment constructed of fly ash and soil mixture was studied. Leaching of eight environmentally concerned metals Ag, As, Ba, Cd, Cr, Hg, Pb, and Se from the fly ash–soil mixtures was examined through batch leaching test and column leaching test. The batch leaching test results showed that the fly ash meets the local regulatory standards for beneficial use of nonhazardous wastes. The column leach test revealed that only Ba, Cr, and Se were detectable in the effluents. The peak concentration of Ba in the effluents was much lower than the US EPA Primary Drinking Water Regulations’ maximum contaminant level (MCL). The peak concentrations of Cr and Se exceeded the MCLs only in the initial flush stage and quickly decreased to below the MCLs. Results of this study suggest a great potential for fly ash to be used in roadway embankments to enhance their mechanical properties, reduce the use of soil, and avoid the disposal of fly ash as waste.  相似文献   

4.
We have studied the availability and leaching of polycyclic aromatic hydrocarbons (PAHs) from two contaminated materials, a tar-containing asphalt granulate (Sigma16 US-EPA PAHs 3412mg/kg) and gasworks soil (SigmaPAHs 900mg/kg), by comparing results from three typical types of leaching tests: a column, sequential batch, and two different availability tests. The sequential batch test was found to largely resemble the column test. However, the leaching of particularly the larger PAHs (>5 aromatic rings) was found to be enhanced in the batch test by up to an order of magnitude, probably due to their association with large DOC (dissolved organic carbon) molecules generated by the vigorous mixing. The release of PAHs in the two availability tests, in which the leaching is facilitated by either a high concentration of DOC or Tenax resin, was similar, although the latter test was easier to perform and yielded more repeatable results. The availability was much higher than the amount leached in the column and sequential batch tests. However, biodegradation had apparently occurred in the column test and the total amount of PAHs released by either leaching or biodegradation, 9% and 26% for asphalt granulate and gasworks soil, respectively, did equal the amount leached in the availability tests. Therefore, the availability was found to provide a relevant measure of the PAH fraction that can be released from the solid phase. These results stress the importance of using the available instead of the total amount of contaminant in the risk analysis of solid materials in utilization or disposal.  相似文献   

5.
A study was conducted to evaluate the leaching potential of unpaved road materials (URM) mixed with lime activated high carbon fly ashes and to evaluate groundwater impacts of barium, boron, copper, and zinc leaching. This objective was met by a combination of batch water leach tests, column leach tests, and computer modeling. The laboratory tests were conducted on soil alone, fly ash alone, and URM-fly ash-lime kiln dust mixtures. The results indicated that an increase in fly ash and lime content has significant effects on leaching behavior of heavy metals from URM-fly ash mixture. An increase in fly ash content and a decrease in lime content promoted leaching of Ba, B and Cu whereas Zn leaching was primarily affected by the fly ash content. Numerically predicted field metal concentrations were significantly lower than the peak metal concentrations obtained in laboratory column leach tests, and field concentrations decreased with time and distance due to dispersion in soil vadose zone.  相似文献   

6.
In this study, percolation and batch leaching tests were considered in order to characterize the behaviour of air pollution control (APC) residues produced in a municipal solid waste incinerator (MSWI) as a function of the liquid to solid ratio (L/S). This waste is hazardous, and taking into account their physical and chemical properties, leaching of contaminants into the environment is the main concern. In our work the leaching behaviour of toxic heavy metals (Pb, Zn, Cr, Ni and Cu) and inorganics associated with soluble salts (Na, K, Ca and Cl) was addressed. Although pH of the leaching solution is the most important variable, L/S may also play an important role in leaching processes. In our work, results from column and batch tests were compared in terms of concentration (mg/L) and releasing (mg/kg). The APC residues revealed to be hazardous according to both tests, and both Pb and Cl far exceeded the regulatory thresholds. The material exhibits high solubility, and when the liquid to solid ratio was high, more than 50% can be solubilised. The patterns of release may be in some cases availability or solubility controlled, and the former was easier to identify. When the results from column and batch experiments were compared by representing the cumulative released amounts (in mg/kg) as a function of L/S, both curves match for Zn, Ni, Cu, K, Na, Cl and Ca, but for Cr and Pb a significant difference was observed. In fact, the column experiments revealed that under percolation conditions it should be expected slow releasing of Pb along time. From this study, it can be concluded that the released amounts obtained in batch experiments for a certain L/S should be considered as the worst case for medium term. Some simple models proposed on the literature and based on local equilibrium assumption showed good fitting to experimental data for soluble species (non-reactive solutes).  相似文献   

7.
Leaching tests are becoming more relevant in assessing solid waste material, particularly with respect to groundwater risks. In the field, water infiltration is the dominant leaching mechanism, which is simulated in the lab with batch and column tests. In this study, we compared percolation, through analytical solutions of the advection–dispersion equation, to laboratory batch and sequential leaching tests. The analytical solutions are supported with comprehensive data from various field and laboratory leaching of different solutes from waste materials and soils collected in long-term joint research projects funded by the German Federal Ministry for Education and Research and the Federal Environment Agency. The comparison of theory and data is facilitated if concentrations and cumulative release are plotted versus the liquid–solid ratios (LS). Both theory and data indicate that leaching behaviour is independent of duration and physical dimensions of the leaching tests. This holds even if field lysimeters are compared to laboratory columns of different size, different flow velocities as well as different contact times. In general, laboratory batch tests over predict effluent concentrations (for LS < Kd). Leaching of solutes from solid samples of certain materials (e.g. chloride from incineration ashes or sulphate from demolition waste) in column and lysimeter tests compares very well and agrees with the analytical solutions. Overall, reproducibility and agreement with theory of column tests are better than batch tests, presumably because the latter are prone to artefacts (e.g. in liquid–solid separation steps). Theory and data fit surprisingly well, despite the fact that the theory is based on the local equilibrium assumption; non-linear sorption and chemical reactions in the solid waste materials are not considered.  相似文献   

8.
To evaluate carbonization as a thermal pretreatment method for landfilling, the releasing characteristics of organic and inorganic constituents from carbonization residue derived from shredded residue of bulky waste was investigated by means of batch and column leaching tests. Shredded residue of bulky waste itself and its incineration ash were tested together to compare pretreatment methods. In batch leaching tests at a liquid/solid ratio of 10, the release of organic carbon from carbonization residue was at a remarkably low level. Besides, carbonization contributed to immobilize heavy metals such as chromium, cadmium, and lead within its residue. In column tests, the discharges of organic constituents were lowest from carbonization residue under aerobic conditions due to microbial activity. The leaching of Cd, Cr, Pb, and Cu from carbonization residue was suppressed under anaerobic conditions; however, this suppression effect tended to be weaker under aerobic conditions. From the results showing that the total releasing amounts of organic and inorganic constituents from carbonization residue are so low as to be comparable to that of incineration ash, carbonization can be considered as one of the thermal pretreatment methods of organic wastes.  相似文献   

9.
Leaching behaviour of hazardous demolition waste   总被引:1,自引:1,他引:0  
Demolition wastes are generally disposed of in unlined landfills for inert waste. However, demolition wastes are not just inert wastes. Indeed, a small fraction of demolition waste contains components that are hazardous to human health and the environment, e.g., lead-based paint, mercury-contained in fluorescent lamps, treated wood, and asbestos. The objective of this study is to evaluate the release potential of pollutants contained in these hazardous components when they are mixed with inert wastes in unlined landfills. After identification of the different building products which can contain hazardous elements and which can be potentially pollutant in landfill scenario, we performed leaching tests using three different lysimeters: one lysimeter containing only inert wastes and two lysimeters containing inert wastes mixed with hazardous demolition wastes. The leachates from these lysimeters were analysed (heavy metals, chlorides, sulphates fluoride, DOC (Dissolved Organic Carbon), phenol index, and PAH). Finally, we compared concentrations and cumulative releases of elements in leachates with the limits values of European regulation for the acceptance of inert wastes at landfill. Results indicate that limit values are exceeded for some elements. We also performed a percolation column test with only demolition hazardous wastes to evaluate the specific contribution of these wastes in the observed releases.  相似文献   

10.
The effective use of residual lateritic soils as fill material for various construction activities is often limited by the difficulty in handling them. Attempt to improve their workability with fly ash and lime has shown promising results, although accompanied by risk of release of heavy metal leachates to the groundwater. In the present work, the leaching properties from residual lateritic soils from a part of Northeast India stabilised with fly ash and lime (CaO) was investigated with the help of single batch leaching test and column leaching test for different soil-fly ash-lime mixes. Test results show that the high pH induced by lime treatment of the mixes helps in keeping most of the metals within the stabilised soil matrix. Although the heavy metal concentrations in the leachates were generally within permissible limits, the release response for different metals was different suggesting implications for permeate solutions having metal pre-concentrations, such as those emanating from hazardous landfill sites. The observed characteristics provide insights towards the potential and realistic estimates of leaching of metals and its variation due to change in fly ash and lime content in the stabilised mix. Many of these constituents found in the stabilised soil had a first-flush phenomenon. But, as they occur only for short duration (about 5 pore volumes over 5 days) and at low concentration, dilution effect may eliminate them. The effect of continuous permeation on the flow parameters and the leaching pattern of the mixes have also been highlighted.  相似文献   

11.
In order to improve and optimize phytoremediation of PAH we propose to focus on the rhizospheric processes controlling PAH degradation. In this paper the effect of root exudates on PAH availability is studied. Model organic compounds (malic acid, malonic acid and EDTA) representing root exudates have been tested for their effect on phenanthrene sorption on a reference non polluted agricultural soil material. Phenanthrene adsorption isotherms were first obtained with batch experiments. Results showed linear isotherms and phenanthrene sorption was enhanced as the concentration of organic compounds in the solution increased. Column leaching experiments were then used to simulate the effect of root exudation following the soil pollution. Inlet solutions containing the different organic acids used were flowed through the column containing the artificially polluted soil material. Elution curves showed that the phenanthrene was less easily eluted when the solution injected contained the organic acids. However, magnitude of the phenomena did not fit with adsorption constants obtained in batch experiments. Phenanthrene desorption appeared limited by sequestration but organic acids seemed able to partially disturb the soil material structure to limit the sequestration effect.  相似文献   

12.
重金属污染土壤生物毒性的发光菌法测定及评价   总被引:1,自引:0,他引:1       下载免费PDF全文
向土壤中人为投加重金属污染物,制备了重金属含量不同的一系列污染土壤,对土壤重金属浸提条件进行了探究,并应用明亮发光杆菌T3(Photobacterium phosphoreum T3)对单一Cu、Cd和Pb污染及Cu-Cd和Cu-Pb复合重金属污染土壤的生物毒性进行了测定。实验结果表明,土壤重金属的最佳浸提剂为0.1 mol/L HCl溶液,最佳浸提时间为2.0 h。在单一重金属污染条件下:Cu表现出低浓度促进生长、高浓度抑制生长的双重生物效应,而Cd和Pb则表现出浓度与生物毒性的正相关性;3种重金属污染土壤的毒性强弱顺序为Cd>Pb>Cu。在复合重金属污染条件下,由于重金属之间的相互作用,污染土壤的生物毒性增强。  相似文献   

13.
Column leaching tests are closer to natural conditions than batch shaking tests and in the last years have become more popular for assessing the release potential of pollutants from a variety of solids such as contaminated soils, waste, recycling and construction materials. Uncertainties still exist regarding equilibration of the percolating water with the solids, that might potentially lead to underestimation of contaminant concentrations in the effluent. The intention of this paper is to show that equilibration of pore water in a finite bath is fundamentally different from release of a certain fraction of the pollutant from a sample and that equilibrium is reached much faster at low liquid-to-solid ratios typical for column experiments (<0.25) than in batch tests with much higher liquid-to-solid ratios (e.g. 2–10). Two mass transfer mechanisms are elucidated: First-order type release (film diffusion) and intraparticle diffusion. For the latter, mass transfer slows down with time and sooner or later non-equilibrium conditions are observed at the column outlet after percolation has been started. Time scales of equilibrium leaching can be estimated based on a comparison of column length with the length of the mass transfer zone, which is equivalent to a Damköhler number approach. Mass transfer and diffusion coefficients used in this study apply to mass transfer mechanisms limited by diffusion in water, which is typical for release of organic compounds but also for dissolution of soluble minerals such as calcite, gypsum or similar. As a conclusion based on these theoretical considerations column tests (a) equilibrate much faster than batch leaching tests and (b) the equilibrium concentrations are maintained in the column effluent even for slow intraparticle diffusion limited desorption for extended periods of time (>days). Since for equilibration the specific surface area is crucial, the harmonic mean of the grain size is relevant (small grain sizes result in high concentrations even after short pre-equilibration of a column). The absolute time scales calculated with linear sorption and aqueous diffusion aim at organic compounds and are not valid for sparingly soluble mineral phases (e.g. metal oxides and silicates). However, the general findings on how different liquid-to-solid ratios and specific surface area influence equilibration time scales also apply to other mass transfer mechanisms.  相似文献   

14.
Column leaching testing can be considered a better basis for assessing field impact data than any other available batch test method and thus provides a fundamental basis from which to estimate constituent release under a variety of field conditions. However, column testing is time-intensive compared to the more simplified batch testing, and may not always be a viable option when making decisions for material reuse. Batch tests are used most frequently as a simple tool for compliance or quality control reasons. Therefore, it is important to compare the release that occurs under batch and column testing, and establish conservative interpretation protocols for extrapolation from batch data when column data are not available. Five different materials (concrete, construction debris, aluminum recycling residue, coal fly ash and bottom ash) were evaluated via batch and column testing, including different column flow regimes (continuously saturated and intermittent unsaturated flow). Constituent release data from batch and column tests were compared. Results showed no significant difference between the column flow regimes when constituent release data from batch and column tests were compared. In most cases batch and column testing agreed when presented in the form of cumulative release. For arsenic in carbonated materials, however, batch testing underestimates the column constituent release for most LS ratios and also on a cumulative basis. For cases when As is a constituent of concern, column testing may be required.  相似文献   

15.
 The effect of the soil solids concentration in batch tests on the measured values of the partition coefficient (K p) of organic pollutants in landfill liner-soil material was investigated. Since this study was based on the results of batch and column tests conducted independently, there were limitations to the conclusions derived. The organic compounds tested were benzene, methylene chloride, toluene, trichloroethylene, and p-xylene. The results of this study showed that as soil solids concentrations increased, the measured K p values of these organic compounds strongly decreased. The observed values of K p stabilized when the soil solids concentration was above a certain value. Typical K p values obtained from batch tests conducted under high soil solids concentrations were close to those obtained from column tests. It was concluded that the K p values of organic compounds measured under low soil solids concentrations, i.e., less than 100 g/l, may not correctly simulate the field situation. Consequently, the values of K p obtained with low soil solids concentrations can result in an overestimation of the retardation factor of the landfill liner material. Received: March 14, 2002 / Accepted: August 25, 2002  相似文献   

16.
The objective of this research was to compare the leaching characteristics of heavy metals such as cadmium, chromium, copper, nickel, lead, etc., in Korean and Japanese municipal solid waste incineration (MSWI) ash. The rate of leaching of heavy metal was measured by KSLT and JTL-13, and the amount of heavy metals leached was compared with the metal content in each waste component. Finally, bio-availability testing was performed to assess the risks associated with heavy metals leached from bottom ash and fly ash. From the results, the value of neutralization ability in Japanese fly ash was four times higher than that in Korean fly ash. The reason was the difference in the content of Ca(OH)(2) in fly ash. The amount of lead leached exceeded the regulatory level in both Japanese and Korean fly ash. The rate of leaching was relatively low in ash with a pH in the range of 6-10. The bio-availability test in fly ash demonstrated that the amount of heavy metals leached was Pb>Cd>Cr, but the order was changed to Pb>Cr>Cd in the bottom ash. The leaching concentration of lead exceeded the Japanese risk level in all fly ashes from the two countries, but the leaching concentration of cadmium exceeded the regulatory level in Korean fly ash only.  相似文献   

17.
Aquatic sediments often contain a large number of chemical contaminants that are potential pollutants. It is often presumed that such contaminants are released to the water column during sediment resuspension and, in there, adversely impact aquatic life and other beneficial uses of the water. However, extensive laboratory and field studies of about 100 contaminated sediments from across the United States that specifically addressed this type of release showed that of about 30 common heavy metals, organic compounds, and other potential pollutants, only manganese II and ammonia were released to then remain in the water column after sediment resuspension. These results indicated that the chemistry of aqueous iron controls the availability of many contaminants in resuspended sediment. The formation of ferric hydroxide during sediment suspension into the water column, as a result of the reaction between ferrous iron in the sediments and dissolved oxygen in the water column, leads to rapid scavenging of many contaminants in the Fe(OH)3 precipitate. The scavenged contaminants are redeposited in the sediments. This article reviews the role of the aqueous chemistry of iron as it relates to controlling the release of potential pollutants from resuspended sediments. © 2005 Wiley Periodicals, Inc.  相似文献   

18.
Scrap material recovery and recycling companies are confronted with waste water that has a highly fluctuating flow rate and composition. Common pollutants, such as COD, nutrients and suspended solids, potentially toxic metals, polyaromatic hydrocarbons and poly chlorinated biphenyls can exceed the discharge limits. An analysis of the leaching behaviour of different scrap materials and scrap yard sweepings was performed at full-scale, pilot-scale and lab-scale in order to find possible preventive solutions for this waste water problem. The results of these leaching tests (with concentrations that frequently exceeded the Flemish discharge limits) showed the importance of regular sweeping campaigns at the company, leak proof or covered storage of specific scrap materials and oil/water separation on particular leachates. The particulate versus dissolved fraction was also studied for the pollutants. For example, up to 98% of the polyaromatic hydrocarbons, poly chlorinated biphenyls and some metals were in the particulate form. This confirms the (potential) applicability of sedimentation and filtration techniques for the treatment of the majority of the leachates, and as such the rainwater run-off as a whole.  相似文献   

19.
何俊  谢腾蛟  杨旅涵  程科 《化工环保》2012,40(4):388-395
以磷酸二氢钾(PDP)钝化后的重金属污染土壤为研究对象,通过室内土柱淋溶和土壤吸水实验,考察pH为3.1、4.6和5.1的模拟酸雨对污染土壤修复过程中重金属淋溶特征及土壤持水能力的影响。实验结果表明:PDP处理显著增加了淋出液的pH、电导率、TOC和正磷酸盐态磷(ZP)含量,在淋溶初期显著降低了淋出液的Cu、Cd和Pb含量,但在淋溶后期增大了Pb含量;土壤持水量与电导率、pH、TOC和ZP含量呈现极显著负相关性;土壤修复过程中,有机质的淋失、盐分含量及pH的增大可引起土壤持水能力的减弱。  相似文献   

20.
Due to the presence of toxic metals, dumping of heavy oil fly ash (HOFA) is causing ever-growing environmental problem including the pollution of air, water and soil. The present study investigates the possible environmental impacts associated with the land disposal of HOFA generated in the power plant. Different modeling and laboratory analysis were integrated to address the real environmental problems. Leaching behavior of heavy metals within the HOFA were investigated by laboratory batch leaching tests, which confirmed that most of the toxic elements in the HOFA can easily leach into the environment with rain water. The level of atmospheric dust surrounding a HOFA dumping site was predicted using the Industrial Source Complex (ISC3) air dispersion model, and the results indicated that the dumping of HOFA could be a potential hazard for local air quality. The study also revealed different reuse options of HOFA. The characteristic analysis confirmed HOFA can be used as a natural adsorbent to remove pollutants from wastewater or as soil stabilizing material by blending with cement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号