首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The problem of heat transfer from two parallel plates of infinite width is formulated for the case where the flow between these plates consists of a periodic motion imposed on a fully developed laminar steady flow. The results indicate an increase in the heat transfer rate with pulsation. This increase is proportional to the amplitude of pulsation and inversely proportional to the Prandtl number.  相似文献   

2.
A numerical investigation was conducted to analyze the unsteady flow field and heat transfer characteristics in a horizontal channel with a built-in heated square cylinder. Hydrodynamic behavior and heat transfer results are obtained by the solution of the complete Navier–Stokes and energy equations using a control volume finite element method (CVFEM) adapted to the staggered grid. The Computation was made for two channel blockage ratios (β=1/4 and 1/8), different Reynolds and Richardson numbers ranging from 62 to 200 and from 0 to 0.1 respectively at Pr=0.71. The flow is found to be unstable when the Richardson number crosses the critical value of 0.13. The results are presented to show the effects of the blockage ratio, the Reynolds and the Richardson numbers on the flow pattern and the heat transfer from the square cylinder. Heat transfer correlation are obtained through forced and mixed convection.  相似文献   

3.
The article presents a numerical investigation on laminar flow and heat transfer characteristics in a three-dimensional isothermal wall square-channel fitted with inline 45° V-shaped baffles on two opposite walls. The computations based on the finite volume method with the SIMPLE algorithm have been conducted for the airflow in terms of Reynolds numbers ranging from 200 to 2000. The inline V-baffles with its V-tip pointing downstream and the attack angle (or half V-apex angle) of 45° relative to the flow direction are mounted repeatedly on the lower and upper walls. The baffled channel flow shows a fully developed periodic flow and heat transfer profile for BR = 0.2 at x/D≈ 8 downstream of the inlet. Influences of different baffle height ratios (BR) and pitch ratios, (PR) on thermal behaviors for a fully developed periodic condition are investigated. It is apparent that the longitudinal counter-rotating vortex flows created by the V-baffle can induce impingement/attachment flows over the walls resulting in greater increase in heat transfer over the test channel. Apart from speeding up the fully developed periodic flow pattern, the rise of the BR leads to the increase in Nu/Nu0 and f/f0 values while that of the PR provides an opposite trend. The V-baffle performs better than the angled baffle at a similar condition. The V-baffle with BR = 0.2 and PR = 1.5 yields the maximum thermal performance of about 3.8 whereas the Nu/Nu0 is some 14 times above the smooth channel at higher Re.  相似文献   

4.
Laminar periodic flow and heat transfer in a two dimensional horizontal channel with isothermal walls and with staggered diamond-shaped baffles is investigated numerically. The computations are based on the finite volume method, and the SIMPLE algorithm has been implemented. The fluid flow and heat transfer characteristics are presented for Reynolds numbers based on the hydraulic diameter of the channel ranging from 100 to 600. Effects of different baffle tip angles on heat transfer and pressure loss in the channel are studied and the results of the diamond baffle are also compared with those of the flat baffle. It is observed that apart from the rise of Reynolds number, the reduction of the baffle angle leads to an increase in the Nusselt number and friction factor. The computational results reveal that optimum thermal performance is at the baffle angle of 5° for baffle height and spacing of 0.5 and 1 times of the channel height, respectively. The thermal performance of the 5°–10°diamond baffle is found to be higher than that of the flat baffle for all Reynolds numbers used.  相似文献   

5.
6.
A numerical investigation has been carried out to examine periodic laminar flow and heat transfer characteristics in a three-dimensional isothermal wall channel of aspect ratio, AR = 2 with 45° staggered V-baffles. The computations are based on the finite volume method, and the SIMPLE algorithm has been implemented. The fluid flow and heat transfer characteristics are presented for Reynolds numbers based on the hydraulic diameter of the channel ranging from 100 to 1200. To generate two pair of main streamwise vortex flows through the tested section, V-baffles with an attack angle of 45° are mounted in tandem and staggered arrangement on the lower and upper walls of the channel. Effects of different baffle heights on heat transfer and pressure drop in the channel are studied and the results of the V-baffle pointing upstream are also compared with those of the V-baffle pointing downstream. It is apparent that in each of the main vortex flows, a pair of streamwise twisted vortex (P-vortex) flows can induce impinging flows on a sidewall and a wall of the interbaffle cavity leading to drastic increase in heat transfer rate over the channel. In addition, the rise in the V-baffle height results in the increase in the Nusselt number and friction factor values. The computational results reveal that the optimum thermal enhancement factor is around 2.6 at baffle height of 0.15 times of the channel height for the V-baffle pointing upstream while is about 2.75 at baffle height of 0.2 times for the V-baffle pointing downstream.  相似文献   

7.
The paper studies the flow of a low density thermally radiating two-component plasma in the presence of mass transfer and Hall current. Since the density is low, an optically thin grey gas approximation is adopted for the radiative heat transfer. Also, at high temperatures, the Arrhenius activation energy is important. For fully developed flow, the problem is modelled by coupled nonlinear differential equations from the incompressible Navier-Stokes equations, together with slip boundary conditions. Exact solutions are inconceivable, but various asymptotic solutions are derived, and these solutions are discussed quantitatively.  相似文献   

8.
In this study, heat transfer due to double impinging vertical slot jets onto an isothermal wall was investigated numerically for laminar flow regime. Navier–Stokes and energy equations were discretized with a finite volume procedure on a non-staggered grid arrangement using SIMPLEM (SIMPLE-Modified) algorithm. The effect of the jet Reynolds number, the jet-isothermal bottom wall spacing, and the distance between two jets on heat transfer and flow field was examined. Air was chosen as the working fluid (Pr = 0.71). It is found that multi-cellular flow is formed in the impingement region due to interaction between two jets and entrainment effects in the duct. The mean Nusselt number increases almost linearly with increasing of Reynolds number at isothermal surface. When Reynolds number of the first jet is higher than second one the heat transfer is enhanced significantly.  相似文献   

9.
10.
The present work advances an analytical approach for conjugated conduction-convection heat transfer problems, by proposing a single domain formulation for modeling both the fluid stream and the channel wall regions. Making use of coefficients represented as space variable functions with abrupt transitions occurring at the fluid-wall interface, the mathematical model is fed with the information concerning the transition of the two domains, unifying the model into a single domain formulation with space variable coefficients. The Generalized Integral Transform Technique (GITT) is then employed in the hybrid numerical-analytical solution of the resulting convection-diffusion problem with variable coefficients, and critically compared for two alternative solution paths. A test problem is chosen that offers an exact solution for validation purposes, based on the extended Graetz problem including transversal conduction across the channel walls. The excellent agreement between approximate and exact solutions demonstrates the feasibility of the approach in handling more involved conjugated problems.  相似文献   

11.
采用边界层的能量积分方程法,基于等效比热模型,对微胶囊相变悬浮液(Microencapsulated Phase Change Materials slurry, MPCMs)的热边界层进行理论建模,推导出了MPCMs外掠平板换热加热等壁温边界条件层流工况下,包含斯蒂芬数的MPCMs的对流换热关联式,然后与数值模拟结果进行比较。结果表明,对流传热系数的解析解与数值模拟结果趋势上相一致,修正后的解析解与数值模拟结果高度吻合。  相似文献   

12.
In the present study, laminar pulsating power-law momentum and heat transfer in a uniformly heated plane duct is studied analytically. Assuming that fully developed conditions exist both hydrodynamically and thermally, a perturbation series method is utilized to derive analytical solutions for the momentum and energy balance equations, and the amplitude is prescribed as the perturbation parameter. For varying values of the power-law index ( n $n$ ), representing pseudoplastic, Newtonian, and dilatant fluids, effects of dimensionless amplitude ( ϵ $\epsilon $ ) and frequency ( F $F$ ) on periodic and period-averaged friction factor and Nusselt number are obtained. The results obtained for Newtonian fluid are shown to be in good harmony with the corresponding findings in the open literature.  相似文献   

13.
A model for predicting heat and mass transfer in a laminar two-phase gas-vapor-drop mist flow over a flat isothermal flat is developed. Using this model, a numerical study is performed to examine the influence of thermal and flow parameters, i.e., Reynolds number, flow velocity, temperature ratio, concentration of the liquid phase, and drop size, on the profiles of velocity, temperature, composition of the two-phase mixture, and heat-transfer intensification ratio. It is shown that, as the concentration of the liquid phase in the free flow increases, the rate of heat transfer between the plate surface and the vapor-gas mixture increases dramatically, whereas the wall friction increases only insignificantly.  相似文献   

14.
Due to its large apparent specific heat during the phase change period, microencapsulated phase change material slurry (MPCMS) has been suggested as a medium for heat transfer. In this paper, the convective heat transfer characteristics of MPCMS flowing in a circular tube were experimentally and numerically investigated. The enhanced convective heat transfer mechanism of MPCMS, especially in the thermal fully developed range, was analyzed by using the enthalpy model. Three kinds of fluid–pure water, micro-particle slurry and MPCMS were numerically investigated. The results show that in the phase change heat transfer region the Ste number and the Mr number are the most important parameters influencing the Nusselt number fluctuation profile and the dimensionless wall temperature. Reb, dp and c also influence the Nusselt number profile and the dimensionless wall temperature, but they are independent of phase change process.  相似文献   

15.
This paper reports an experimental work on the convective heat transfer of nanofluids, made of γ-Al2O3 nanoparticles and de-ionized water, flowing through a copper tube in the laminar flow regime. The results showed considerable enhancement of convective heat transfer using the nanofluids. The enhancement was particularly significant in the entrance region, and was much higher than that solely due to the enhancement on thermal conduction. It was also shown that the classical Shah equation failed to predict the heat transfer behaviour of nanofluids. Possible reasons for the enhancement were discussed. Migration of nanoparticles, and the resulting disturbance of the boundary layer were proposed to be the main reasons.  相似文献   

16.
The effect of SiO2 particles on heat transfer performance of a pulsating heat pipe(PHP) was investigated experimentally.DI water was used as the base fluid and contrast medium for the PHP.In order to study and measure the character,there are SiO2 /H2 O nanofluids with different concentration and applying with various heating powers during the experiment investigation.According to the experimental result,the high fraction of SiO2 /H2 O will deteriorate the performance of PHP compared with DI water,i.e.the thermal resistance and the temperature of evaporation section increases.It is in contrary in the case of low fraction of SiO2 /H2 O.Finally,the comparison of the thermal performances between the normal operation system and the static settlement system is given.It is found that both the thermal resistance of nanofluid PHP and the temperature of the evaporation section increase after standing for a period,and it is the same trend for the temperature fluctuation at the identical heating power for PHP.  相似文献   

17.
A hybrid solution through the so-called Generalized Integral Transform Technique (GITT) is obtained for the MHD flow and heat transfer of a Newtonian fluid in parallel-plates channels. A simple mathematical formulation for the problem is adopted, which evidences both the transient regime flow sustainable only by a constant pressure gradient; and the steady state situation that considers both a constant pressure gradient and a movement of the upper plate, as well as the action of an inflow and outflow perpendicular to the porous plates. Results for the velocity and temperature fields are computed within the governing parameters, namely, pressure gradient, suction velocity, upper plate velocity and Hartmann numbers, for typical situations. A convergence analysis is also performed showing the consistency of the results. In addition, the present results are confronted with those previously reported ones in the literature showing excellent agreements.  相似文献   

18.
The convective heat transfer coefficients of several nanoparticle-in-liquid dispersions (nanofluids) have been measured under laminar flow in a horizontal tube heat exchanger. The nanoparticles used in this research were graphitic in nature, with aspect ratios significantly different from one (l/d ≈ 0.02). The graphite nanoparticles increased the static thermal conductivities of the fluid significantly at low weight fraction loadings. However, the experimental heat transfer coefficients showed lower increases than predicted by either the conventional heat transfer correlations for homogeneous fluids, or the correlations developed from the particle suspensions with aspect ratios close to one. New correlations on heat transfer need to be developed for nanofluid systems.  相似文献   

19.
In this paper, roughness was modelled as a pattern of parallelepipedic elements of height k periodically distributed on the plane walls of a microchannel of height H and of infinite span. Two different approaches were used to predict the influence of roughness on heat transfer in laminar flows through this microchannel. Three-dimensional numerical simulations were conducted in a computational domain based on the wavelength λ. A one-dimensional model (RLM model) was also developed on the basis of a discrete-element approach and the volume averaging technique. The numerical simulations and the rough-layer model agree to show that the Poiseuille number Po and the Nusselt number Nu increase with the relative roughness. The RLM model shows that the roughness effect may be interpreted by using effective roughness heights keff and keffθ for predicting Po and Nu respectively. keff and keffθ depend on two dimensionless local parameters: the porosity of the rough-layer and the roughness height normalized with the distance between the rough elements. The present results show that roughness increases the friction factor more than the heat transfer coefficient (performance evaluation criteria < 1), for a relative roughness height expected in the fabrication of microchannels (k/(H/2) < 0.46) or k/Dh < 0.11).  相似文献   

20.
Forced convective of a nanofluid that consists of water and Al2O3 in horizontal tubes has been studied numerically. Computed results were validated with existing well established correlation. Two-phase Eulerian model has been implemented for the first time to study such a flow field. A single-phase model and two-phase mixture model formulations were also used for comparison. The comparison of calculated results with experimental values shows that the mixture model is more precise. It is illustrated that the single-phase model and the two-phase Eulerian model underestimates the Nusselt number. Effects of nanoparticles concentration on the thermal parameters are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号