首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
以液态钠作为试验工质,对六边形排列的7棒束通道内液态钠流动换热特性进行了试验研究。试验流速为0~4 m·s-1,热流密度为0~120 kW·m-2,系统压力为1.5~200 kPa,对应的雷诺数和佩克莱数分别为4 000~60 000和0~340。深入分析了部分热工参数对7棒束通道内液态钠流动换热特性的影响,通过对7棒束通道内液态钠流动换热的试验数据的非线性拟合,得到适用于7棒束通道内液态钠流动换热的经验关系式。结果表明:拟合得到的摩擦系数关系式和努塞尔数关系式能准确地预测7棒束通道内的试验数据,其预测误差分别小于5%和6%。将获得的努塞尔数关系式与其他研究者的试验数据进行比较,与其他研究者985%的试验数据误差在30%以内,表明获得的关系式适用于7棒束通道内液态钠流动换热。  相似文献   

2.
以自然循环下堆芯内可能会发生的低流量传热为研究背景,对5×5棒束通道内的混合对流传热现象进行了实验研究。实验压力为6 MPa, 质量流量为25~150 kg/(m2·s),热流密度为25~300 kW/m2,实验雷诺数Re为1000~30000,浮升力参数Bo*为2×10-7~3×10-3。实验发现,随着Bo*的增大,棒束通道内传热产生先弱化后强化的趋势。浮升力对棒束通道内传热造成影响的起始点为Bo*=3.5×10-6,当Re >15000时,浮升力依然可对传热造成弱化现象。基于实验数据,提出了适用于棒束通道的混合对流经验关系式。   相似文献   

3.
超临界水四棒束传热数值分析   总被引:1,自引:1,他引:0  
超临界水冷堆(SCWR)开发的关键是棒束内超临界水(SCW)的热工水力特性。本文针对超临界水四棒束流动传热实验进行CFD数值模拟,SSG湍流模型的计算结果与实验结果吻合良好。分析结果表明,流动方向对棒束截面内流量分布有显著影响。与下降流相比,尽管上升流时棒束间流动搅混较弱,但上升流时棒束截面流量及壁面周向温度分布更加均匀,加热棒壁面温度更低。可见,棒束横截面上的流量分布是影响加热棒壁面流动传热的主要因素。  相似文献   

4.
Kim.  YS Olan.  DR 《国外核动力》2000,21(1):26-36
为提高间隙热传导率,建议将液态金属用传统轻水堆棒的间隙填充材料以取代原来的氦气。此概念的可能应用范围包括动力堆燃料棒、专门目的试验堆实验棒以及混合氧化燃料棒。已开发出一种新颖的制造方法来确保将液态金属均匀地填充到燃料和微棒包壳之间的间隙中。  相似文献   

5.
超临界水冷堆相对目前压水堆具设备简化、热效率高等显著优点,而相关实验研究公开资料受到研究成本和实验技术限制相当有限,数值分析在超临界流动传热方面的应用逐渐广泛却缺乏相应的实验数据验证。在7棒束内超临界氟利昂流体流动传热实验的基础上,采用计算流体动力学(Computational Fluid Dynamics,CFD)软件STAR-CCM+、子通道软件COBRA-SC分别对三种典型工况的流动传热进行数值分析。对壁面温度的预测结果表明,流体温度低于拟临界点条件下,STARCCM+的计算结果低于实验值,温度误差在8%内;流体温度高于拟临界点条件下,STAR-CCM+的计算结果高于实验值,温度差值在16%内。改造后的COBRA-SC程序计算得到的典型通道流体温度与STAR-CCM+结果一致,且COBRA-SC的计算对壁面温度做出了十分接近于实验值的预测。研究表明,STAR-CCM+和COBRA-SC均能对棒束内超临界流体流动传热做出了较好的趋势预测,但对于流体温度跨越拟临界点温度条件下的模型需要进一步完善。  相似文献   

6.
针对格架下游传热问题,开展了格架对5×5棒束通道中传热影响的实验研究,实验Re约为1000~30000,浮升力参数Bo*为2×10-7~3×10-3。观察实验结果发现,格架下游传热与浮升力参数存在较强关联,当浮升力参数较大时,格架下游传热较复杂,且不同于人们以往对格架下游传热的认识。通过对实验数据分析,提出了新的预测格架下游传热的经验关系式,此关系式考虑了浮升力对格架下游传热的影响,且能较好地对格架下游传热进行预测。  相似文献   

7.
带格架四棒束超临界水流动传热数值分析   总被引:1,自引:1,他引:0  
棒束内超临界水流动传热是超临界水堆堆芯热工水力研究的重要内容,但对其认识还十分有限。本文针对四棒束内超临界水的流动传热现象开展数值模拟,特别分析了定位格架对棒束通道内流动和传热的影响。结果表明,采用SSG湍流模型计算所得到的棒束壁面温度和实验结果吻合良好,定位格架的存在影响下游流体的速度分布,显著提高格架下游的传热特性,交混系数有大幅上升,使得加热棒周向壁面温度分布更加平均,最高温度出现位置发生改变。  相似文献   

8.
采用计算流体动力学(CFD)分析方法模拟了含一根弯曲燃料棒(简称“弯曲棒”)的5×5全长燃料棒束内的沸腾传热现象。基于欧拉两流体模型和改进的壁面沸腾模型进行计算,并基于压水堆子通道和棒束实验( PSBT )基准题中的试验数据对计算方法进行了验证,计算所得截面平均空泡份额与试验数据吻合良好,说明了现有计算方法的可靠性。基于计算结果考察了弯曲棒对棒束通道内流场、温度场、空泡份额等关键参数的影响。研究结果表明,弯曲棒的存在对截面横向流动、流体温度、空泡份额等均未产生显著影响,但弯曲棒表面温度增加,气泡也易发生聚集,增加了发生临界热流密度(CHF)的风险。   相似文献   

9.
本文针对紧凑型压水堆提出了一种可代替固体控制棒束的反应性控制方法—"液态金属控制",该控制方法不仅可以避免固体控制棒因机械传动带来的诸多技术问题、大幅简化堆芯结构设计,而且还具有布置灵活、反应性控制能力强等特点。计算结果表明:对于热功率为180MW、平均功率密度为91.2MW/m3的紧凑型压水堆,堆芯寿期可以达到1 000EFPD。  相似文献   

10.
在实验的基础上对液态金属钠沸腾两相流动传热特性进行理论研究。计算对象为环形流道。单相流动区域认为液态金属钠不可压缩;两相流动区域考虑钠蒸汽的可压缩性。两相流动区域选用均匀流模型,求解过程中采用迎风格式进行积分。将模型计算结果与相关实验数据进行对比,结果表明本文模型可用于计算液态金属钠沸腾两相流动传热特性,模型计算结果在一定程度上能完成对实验工作的拓展。  相似文献   

11.
紧密栅元内的流体流动传热研究对高转化比反应堆燃料组件的优化有十分重要的意义。本文采用CFD方法对7棒束紧密栅元棒束通道内流体流动传热现象进行了数值模拟,并与7棒束紧密栅元内氟利昂流体传热的实验结果进行对比分析,详细分析了定位格架对棒束内流体传热流动的影响。结果表明:数值计算所得的非加热棒的壁面温度和实验吻合良好,定位格架的存在对其下游流体流动、棒束最高温度分布及交混系数有明显的影响,棒束某些位置因流动滞止导致温度大幅上升,在设计中应加以注意。  相似文献   

12.
本文对竖直管束及单管的管外冷凝换热进行了实验研究,分析了管壁面过冷度、混合气体压力和不凝性气体含量对管束外冷凝传热性能的影响,对比了管束与单管的传热特性,给出了管束外冷凝传热系数的计算关联式。研究结果表明,管束的平均冷凝传热系数随过冷度的增大而减小,随混合气体压力的增大而增大,随不凝性气体质量分数的增加而减小。在混合气体高压力、低不凝性气体含量时管束的传热效果明显优于单管。关联式计算值与实验值误差范围小于±10%。  相似文献   

13.
A study was made of uranium contamination in (a) the coating layers of TRISO particles (a-1) before compacting and (a-2) separated from once-compacted fuel heat-treated at 1,400 or 1,800°C, and (b) in the matrix material of the same compacts. The contamination in the pyrocarbon layers of the coating was determined, after mechanically separating the coating layers, by a procedure of neutron activation, burn-off and 133Xe trapping. For the silicon carbide coating layer, the fragments of coating left from the above procedure were fused into alkaline melt, and the 133Xe released at each heating step was trapped. For the matrix material, the fuel compacts were deconsolidated electrolytically or mechanically, followed by activation analysis. The results of the foregoing measurements proved the uranium contamination in pyrocarbon and silicon carbide coating to be at most of the order of 10?4 in reference to uranium content in kernel, while the corresponding value for particles sampled from fuel compacts heat-treated at 1,800°C were appreciably higher. The corresponding values found for the matrix material were of the order of 10?5.  相似文献   

14.
采用高Re k-ε模型与壁面函数法对液态金属钠在圆管中湍流传热特性进行数值计算,并与文献实验结果进行了比较,计算值与实验结果符合较好。同时应用该方法研究了湍流程度和加热条件对液态钠传热特性的影响。结果表明:湍流程度对传热的影响主要集中在流道前半段,后半段分子扩散对传热的影响逐渐凸现出来,使不同湍流程度流体传热特性的区别逐渐缩小。初始温度与热流密度对传热特性无明显影响。  相似文献   

15.
采用高雷诺数(Re)k-ε模型与壁面函数法对液态金属钠在环管中湍流流动传热特性进行计算,并与实验结果进行比较,结果表明计算值与实验结果符合较好。应用该方法研究湍流程度、加热条件、几何条件等因素对液态金属钠在环管中湍流传热特性的影响。研究表明,湍流程度对传热的影响主要集中在流道前半段,后半段分子扩散对传热的影响逐渐凸现出来,使不同湍流程度下传热特性的区别逐渐缩小;初始温度与加热热流密度对传热特性无明显影响;环管间隙增大,湍流传热效果增强,同等间隙时管径变化对传热特性无明显影响。  相似文献   

16.
通过对不同管径和倾角的3×3管束开展管外含空气蒸汽冷凝试验,研究了传热管管径和倾角影响管束外含空气蒸汽冷凝传热的基本规律。结果表明:管径和倾角的影响在不同压力范围内具有明显差异。在压力0.8 MPa以下,冷凝传热系数总体随管径和倾角的减小而增大,管径12 mm、0°倾角传热管的冷凝传热系数较管径19 mm、90°倾角的冷凝传热系数最大可增加29%。在压力0.8 MPa以上,冷凝传热系数随管径的减小而减小,最大可降低18%;随倾角的减小先减小后增大,在约60°倾角时,冷凝传热系数最小。   相似文献   

17.
为研究液态金属钠在不锈钢材料表面流动时的湍流传热特性,在已有实验研究的基础上,提出了k-ε模型下的湍流普朗特数Prt模型,并使用Fluent程序对圆管内的液态金属钠在不锈钢材料表面流动时的传热特性进行了计算。理论设计值与已有实验结果进行对比,二者符合较好。根据本文提出的Prt模型,可较为精确地计算液态金属钠在不锈钢材料表面流动时的传热特性。  相似文献   

18.
螺旋管式直流蒸汽发生器(HCOTSG)是一种蒸汽发生器常用形式。得益于其特殊的优势,HCOTSG被广泛用于各类反应堆动力系统中。本文提出了利用计算流体力学软件(FLUENT)对液态金属HCOTSG的壳侧液态铅铋、管侧两相流体进行耦合流动传热计算的CFD方法,并通过与相关实验研究结果的对比验证了数值模拟方法的正确性。在此基础上,本文对HCOTSG在典型工况下开展了数值模拟计算,得到蒸汽发生器内部的热工水力参数分布情况,并对其内部的流动换热特性进行分析。本研究为液态金属HCOTSG流动换热特性研究及结构设计优化提供新的思路方法。  相似文献   

19.
1987~1991年世界压水堆核电站蒸汽发生器传热管因各种原因所起的堵管数据;运用贝叶斯统计理论对蒸汽发生器寿命进行了可靠性分析,贝叶斯方法是个人信念,经验,统计数据和抽样信息的综合,因而显得比传统统计法更价值,文中估算结果的合理性表明了这一点。  相似文献   

20.
以去离子水为实验介质,在单面受热流密度条件下,开展了聚变装置偏滤器的过冷流动沸腾强化换热特性实验研究,将内肋强化换热技术与内插扭带结构相结合,利用两者的协同强化传热效应,设计出一种复合换热管。实验参数为:质量流速,992~4 960 kg/(m2·s);压力,04~2 MPa;入口过冷度,8701~11921 ℃;热流密度,1~163 MW/m2。对4种强化换热管(光管、内插扭带管、内螺纹肋管和复合换热管)的管内过冷流动沸腾换热特性和综合性能评价指标(PEC)进行了对比实验。结果表明:与其他3种管道相比,复合换热管的对流换热系数和PEC最高,传热特性最好。研究了复合换热管的扭带扰动比、螺距、压力和质量流速对管内两相流动对流换热系数的影响规律,发现对流换热系数与螺距、质量流速呈正比,与扭带扰动比、压力呈反比。最后对比了4个现有的过冷流动沸腾换热经验公式,并在无量纲模型基础上,增加了扰动比和螺径比(t/Dh)进行修正,利用非线性拟合方法提出了适合复合换热管过冷流动沸腾的努塞尔数新公式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号