首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hybrid systems that use both raw materials (manufacturing mode) and returned products (remanufacturing mode) in their production process are considered. The system consists of one facility and necessitates setup for switching from one production mode to another. Since the flow rate of returned products is limited (fixed percentage of the demand rate is considered), switching from one mode to another is unavoidable, and so production and setup scheduling becomes critical for meeting customer demand and manufacturing cost optimization. Analytical solutions for production and setup strategies are obtained, feasibility conditions are derived, and the sensitivity of obtained results over system parameters is investigated. It is demonstrated that there exist two types of systems: mainly manufacturing systems with a relatively low rate of return, and mainly remanufacturing systems with a relatively low use of raw materials. Quantitative criteria distinguishing these two types of systems are developed, and it is shown that systems of different types obey different feasibility conditions and exhibit different optimal behavior.  相似文献   

2.
Engineering with Computers - In this study, we propose a new hybrid algorithm fusing the exploitation ability of the particle swarm optimization (PSO) with the exploration ability of the grey wolf...  相似文献   

3.
Particle swarm optimization algorithm is a inhabitant-based stochastic search procedure, which provides a populace-based search practice for getting the best solution from the problem by taking particles and moving them around in the search space and efficient for global search. Grey Wolf Optimizer is a recently developed meta-heuristic search algorithm inspired by Canis-lupus. This research paper presents solution to single-area unit commitment problem for 14-bus system, 30-bus system and 10-generating unit model using swarm-intelligence-based particle swarm optimization algorithm and a hybrid PSO–GWO algorithm. The effectiveness of proposed algorithms is compared with classical PSO, PSOLR, HPSO, hybrid PSOSQP, MPSO, IBPSO, LCA–PSO and various other evolutionary algorithms, and it is found that performance of NPSO is faster than classical PSO. However, generation cost of hybrid PSO–GWO is better than classical and novel PSO, but convergence of hybrid PSO–GWO is much slower than NPSO due to sequential computation of PSO and GWO.  相似文献   

4.
This paper investigates the scheduling problem of physicians and medical staff in outpatient department of large hospitals with multi-branch. The large hospital has several branches and each branch has its own medical staff, while the physicians need to serve in all the branches affiliated to the hospital. In order to improve the working efficiency of physicians, each physician would be equipped with a medical staff during his working hours. The working time of physicians and medical staff have several requirements considering the satisfaction of them. The paper takes into account the demand and the available resources of the hospital, the workload of physicians and medical staff, etc. as the constraints, and the purpose is to minimize the dissatisfaction of physicians, the cost of physicians and the deviation of the frequency of physicians at work in different clinics. Then, a hybrid meta-heuristic algorithm SCA–VNS combining a Sine Cosine Algorithm (SCA) and variable neighborhood search (VNS) based on Iterated Hungarian algorithm, which is incorporated to solve the physicians and medical staff assignment, is proposed to solve this problem. Through computational experiments that available physicians and medical staff scheduling have been generated and perform better than other compared algorithms.  相似文献   

5.
The vibration domain of structures can be reduced by imposing some constraints on their natural frequencies. For this purpose optimal design of structures under frequency constraints is required which involves highly non-linear and non-convex problems. In this paper an efficient hybrid algorithm is developed for solving such optimization problems. This algorithm utilizes the recently developed colliding bodies optimization (CBO) algorithm as the main engine and uses the positive properties of the particle swarm optimization (PSO) algorithm to increase the efficiency of the CBO. The distinct feature of the present hybrid algorithm is that it requires no parameter tuning. The CBO is known for being parameter independent, and avoiding the use of the traditional penalty method to handle the constraints upholds this property. Two mathematical constrained functions taken from the literature are studied to verify the performance of the algorithm. The algorithm is then applied to optimize truss structures with frequency limitations. The numerical results demonstrate the efficiency of the presented algorithm for this class of problems.  相似文献   

6.
7.
Harmonic estimation is the main process in active filters for harmonic reduction. A hybrid Adaptive Neural Network–Particle Swarm Optimization (ANN–PSO) algorithm is being proposed for harmonic isolation. Originally Fourier Transformation is used to analyze a distorted wave. In order to improve the convergence rate and processing speed an Adaptive Neural Network Algorithm called Adaline has then been used. A further improvement has been provided to reduce the error and increase the fineness of harmonic isolation by combining PSO algorithm with Adaline algorithm. The inertia weight factor of PSO is combined along with the weight factor of Adaline and trained in Neural Network environment for better results. ANN–PSO provides uniform convergence with the convergence rate comparable that of Adaline algorithm. The proposed ANN–PSO algorithm is implemented on an FPGA. To validate the performance of ANN–PSO; results are compared with Adaline algorithm and presented herein.  相似文献   

8.
The features of concurrency provide important concepts for problem solving in a wide range of application areas. Many languages have now been developed to support this approach, with various notations being proposed. Occam is a programming language which supports concurrency using the process as its program structure, and provides synchronous communication between these processes. This paper presents the main features of occam and illustrates its use through various examples.  相似文献   

9.
Fitting data points to curves (usually referred to as curve reconstruction) is a major issue in computer-aided design/manufacturing (CAD/CAM). This problem appears recurrently in reverse engineering, where a set of (possibly massive and noisy) data points obtained by 3D laser scanning have to be fitted to a free-form parametric curve (typically a B-spline). Despite the large number of methods available to tackle this issue, the problem is still challenging and elusive. In fact, no satisfactory solution to the general problem has been achieved so far. In this paper we present a novel hybrid evolutionary approach (called IMCH-GAPSO) for B-spline curve reconstruction comprised of two classical bio-inspired techniques: genetic algorithms (GA) and particle swarm optimization (PSO), accounting for data parameterization and knot placement, respectively. In our setting, GA and PSO are mutually coupled in the sense that the output of one system is used as the input of the other and vice versa. This coupling is then repeated iteratively until a termination criterion (such as a prescribed error threshold or a fixed number of iterations) is attained. To evaluate the performance of our approach, it has been applied to several illustrative examples of data points from real-world applications in manufacturing. Our experimental results show that our approach performs very well, being able to reconstruct with very high accuracy extremely complicated shapes, unfeasible for reconstruction with current methods.  相似文献   

10.
Cloud platforms composed of multi-core CPU and many-core Graphics Processing Unit (GPU) have become powerful platforms to host incremental CPU–GPU workloads. In this paper, we study the problem of optimizing the CPU resource management while keeping the quality of service (QoS) of games. To this end, we propose vHybrid, a lightweight user mode runtime framework, in which we integrate a scheduling algorithm for GPU and two algorithms for CPU to efficiently utilize CPU resources with the control accuracy of QoS. vHybrid can maintain the desired QoS with low CPU utilization, while being able to guarantee better QoS performance with little overhead. Our evaluations show that vHybrid saves 37.29% of CPU utilization with satisfactory QoS for hybrid workloads, and reduces three orders of magnitude for QoS fluctuations, without any impact on GPU workloads.  相似文献   

11.
Energy efficient scheduling of parallel tasks on multiprocessor computers   总被引:2,自引:1,他引:1  
In this paper, scheduling parallel tasks on multiprocessor computers with dynamically variable voltage and speed are addressed as combinatorial optimization problems. Two problems are defined, namely, minimizing schedule length with energy consumption constraint and minimizing energy consumption with schedule length constraint. The first problem has applications in general multiprocessor and multicore processor computing systems where energy consumption is an important concern and in mobile computers where energy conservation is a main concern. The second problem has applications in real-time multiprocessing systems and environments where timing constraint is a major requirement. Our scheduling problems are defined such that the energy-delay product is optimized by fixing one factor and minimizing the other. It is noticed that power-aware scheduling of parallel tasks has rarely been discussed before. Our investigation in this paper makes some initial attempt to energy-efficient scheduling of parallel tasks on multiprocessor computers with dynamic voltage and speed. Our scheduling problems contain three nontrivial subproblems, namely, system partitioning, task scheduling, and power supplying. Each subproblem should be solved efficiently, so that heuristic algorithms with overall good performance can be developed. The above decomposition of our optimization problems into three subproblems makes design and analysis of heuristic algorithms tractable. A unique feature of our work is to compare the performance of our algorithms with optimal solutions analytically and validate our results experimentally, not to compare the performance of heuristic algorithms among themselves only experimentally. The harmonic system partitioning and processor allocation scheme is used, which divides a multiprocessor computer into clusters of equal sizes and schedules tasks of similar sizes together to increase processor utilization. A three-level energy/time/power allocation scheme is adopted for a given schedule, such that the schedule length is minimized by consuming given amount of energy or the energy consumed is minimized without missing a given deadline. The performance of our heuristic algorithms is analyzed, and accurate performance bounds are derived. Simulation data which validate our analytical results are also presented. It is found that our analytical results provide very accurate estimation of the expected normalized schedule length and the expected normalized energy consumption and that our heuristic algorithms are able to produce solutions very close to optimum.  相似文献   

12.
Natural Computing - Nature is a great source of inspiration for solving complex problems in real-world. In this paper, a hybrid nature-inspired algorithm is proposed for feature selection problem....  相似文献   

13.
Known algorithms capable of scheduling implicit-deadline sporadic tasks over identical processors at up to 100% utilisation invariably involve numerous preemptions and migrations. To the challenge of devising a scheduling scheme with as few preemptions and migrations as possible, for a given guaranteed utilisation bound, we respond with the algorithm NPS-F. It is configurable with a parameter, trading off guaranteed schedulable utilisation (up to 100%) vs preemptions. For any possible configuration, NPS-F introduces fewer preemptions than any other known algorithm matching its utilisation bound.  相似文献   

14.
This paper presents a hybrid model of integrating the synergy of two superior classifiers: Convolutional Neural Network (CNN) and Support Vector Machine (SVM), which have proven results in recognizing different types of patterns. In this model, CNN works as a trainable feature extractor and SVM performs as a recognizer. This hybrid model automatically extracts features from the raw images and generates the predictions. Experiments have been conducted on the well-known MNIST digit database. Comparisons with other studies on the same database indicate that this fusion has achieved better results: a recognition rate of 99.81% without rejection, and a recognition rate of 94.40% with 5.60% rejection. These performances have been analyzed with reference to those by human subjects.  相似文献   

15.
Reservoir flood control operation (RFCO) is a complex multi-objective optimization problem (MOP) with interdependent decision variables. Traditionally, RFCO is modeled as a single optimization problem by using a certain scalar method. Few works have been done for solving multi-objective RFCO (MO-RFCO) problems. In this paper, a hybrid multi-objective optimization approach named MO-PSO–EDA which combines the particle swarm optimization (PSO) algorithm and the estimation of distribution algorithm (EDA) is developed for solving the MO-RFCO problem. MO-PSO–EDA divides the particle population into several sub-populations and builds probability models for each of them. Based on the probability model, each sub-population reproduces new offspring by using PSO based and EDA methods. In the PSO based method, a novel global best position selection method is designed. With the help of the EDA based reproduction, the algorithm can lean linkage between decision variables and hence have a good capability of solving complex multi-objective optimization problems, such as the MO-RFCO problem. Experimental studies on six benchmark problems and two typical multi-objective flood control operation problems of Ankang reservoir have indicated that the proposed MO-PSO–EDA performs as well as or superior to the other three competitive multi-objective optimization algorithms. MO-PSO–EDA is suitable for solving MO-RFCO problems.  相似文献   

16.
Wu  Jinglai  Luo  Liang  Zhu  Bo  Zhang  Nong  Xie  Maoqing 《Multibody System Dynamics》2019,47(1):43-64
Multibody System Dynamics - Considering the unavoidable uncertainty of material properties, geometry, and external loads existing in rigid–flexible multibody systems, a new hybrid uncertain...  相似文献   

17.
The intention of this hybridization is to further enhance the exploratory and exploitative search capabilities involving simple concepts. The proposed algorithm adopts the combined discrete and continuous probability distribution scheme of ant colony optimization (ACO) to specifically assist genetic algorithm in the aspect of exploratory search. Besides, distinctive crossover and mutation operators are introduced, in which, two types of mutation operators, namely, standard mutation and refined mutation are suggested. In early iterations, standard mutation is utilized collaboratively with the concept of unrepeated tours of ACO to evade local entrapment, while refined mutation is used in later iterations to supplement the exploitative search, which is mainly controlled by particle swarm optimization. The proposed method has been validated in solving test functions and well-known engineering design problems. It exhibits a great global search capability even in the presence of non-linearity, multimodality and constraints, involving a large number of dimensions as well as large search areas.  相似文献   

18.
19.
Formal verification of real-time systems with preemptive scheduling   总被引:2,自引:0,他引:2  
In this paper, we propose a method for the verification of timed properties for real-time systems featuring a preemptive scheduling policy: the system, modeled as a scheduling time Petri net, is first translated into a linear hybrid automaton to which it is time-bisimilar. Timed properties can then be verified using HyTech. The efficiency of this approach leans on two major points: first, the translation features a minimization of the number of variables (clocks) of the resulting automaton, which is a critical parameter for the efficiency of the ensuing verification. Second, the translation is performed by an over-approximating algorithm, which is based on Difference Bound Matrix and therefore efficient, that nonetheless produces a time-bisimilar automaton despite the over-approximation. The proposed modeling and verification method are generic enough to account for many scheduling policies. In this paper, we specifically show how to deal with Fixed Priority and Earliest Deadline First policies, with the possibility of using Round-Robin for tasks with the same priority. We have implemented the method and give some experimental results illustrating its efficiency.
Olivier (H. RouxEmail:
  相似文献   

20.

Differential evolution (DE) is a population-based stochastic search algorithm, whose simple yet powerful and straightforward features make it very attractive for numerical optimization. DE uses a rather greedy and less stochastic approach to problem-solving than other evolutionary algorithms. DE combines simple arithmetic operators with the classical operators of recombination, mutation and selection to evolve from a randomly generated starting population to a final solution. Although global exploration ability of DE algorithm is adequate, its local exploitation ability is feeble and convergence velocity is too low and it suffers from the problem of untime convergence for multimodal objective function, in which search process may be trapped in local optima and it loses its diversity. Also, it suffers from the stagnation problem, where the search process may infrequently stop proceeding toward the global optimum even though the population has not converged to a local optimum or any other point. To improve the exploitation ability and global performance of DE algorithm, a novel and hybrid version of DE algorithm is presented in the proposed research. This research paper presents a hybrid version of DE algorithm combined with random search for the solution of single-area unit commitment problem. The hybrid DE–random search algorithm is tested with IEEE benchmark systems consisting of 4, 10, 20 and 40 generating units. The effectiveness of proposed hybrid algorithm is compared with other well-known evolutionary, heuristics and meta-heuristics search algorithms, and by experimental analysis, it has been found that proposed algorithm yields global results for the solution of unit commitment problem.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号