首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
    
This study evaluated attraction and passage of native fish through an automated fish lock on the tropical Fitzroy River in north‐eastern Australia. In 69 samples (24 h each) taken at the exit and entrance of the fish lock, 17 fish species and 13 402 individuals were collected, at a maximum rate of 3317 fish per day. During low river flows, the fish lock transferred a broad size range of fish (35–710 mm long), though migratory biomass was small. Removal of a vertical fish‐crowding device did not affect the passage rate. Netting studies and observations of fish migrating below the weir suggested that the entrance was poorly located during high flows and another fishway near the spillway would enhance fish passage. The fish lock was inoperative for 48% of the time, due to mechanical and software failure, and a narrow operational range unsuited to the variable hydrology. Nevertheless, these design issues are site specific and reflect that fish lock technology is in its infancy in Australia. The operational reliability of the fish lock is now greatly improved but further work is needed to optimize the automatic cycling. To accommodate the inherently variable hydrology of lowland tropical/sub‐tropical rivers into fishway design, we highlight important research needs for fishways and migratory fish communities. Fish locks are often considered a less favourable fish passage option but with the operational reliability issues partially resolved, they appear to have considerable potential for tropical river systems with low minimum flows and low biomass; with further research and design, they may have wider application. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
    
Fish passage through an experimental vertical‐slot fishway was assessed at a floodplain regulator on the Mekong River in Central Laos between April and July 2009. Experiments were conducted to investigate the influence of fishway floor slope (1v:15h or 1v:7.5h) on fish passage success with a view to developing a series of optimal design criteria for the construction of vertical‐slot fishways at other barriers to fish passage in the Lower Mekong Basin. A total of 14 661 fish from 73 species were captured during the experiments. Catches were dominated by riverine (white) (n = 51; 69% of total) and floodplain (black) species (n = 15; 20%) which represented 19 families in total. The work demonstrated that fish were actively attempting upstream passage from the Mekong River to an adjacent floodplain and displayed strong migratory behaviour during river level rises. Migratory activity was greatest during sharp rises in water level but reduced substantially when river level fell. Fish community composition varied greatly among the two fishway floor slopes and the control group. More fish species were collected from control samples, but the most fish and species were collected when the fishway was configured on a moderate hydraulic slope (1v:15h). A range of size classes were also collected from control and moderate‐slope groups, but steeper‐gradient catches were dominated by larger fish. This study demonstrated that vertical‐slot fishways could provide passage for a biodiverse fish community where fish move laterally onto floodplains. The construction of fishways which consider the local fish ecology and hydrology may therefore represent a valuable management tool to help restore important movement pathways for tropical freshwater fish. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
    
Well‐designed fishways have assisted in restoring migrations and rehabilitating riverine fish species in all continents. The performance of fishways varies greatly with their type, design and operating regime, and with the species involved. Vertical‐slot fishways are widely used to overcome low‐level barriers, especially for non‐salmonids. Important issues remain in the design of fishways to meet performance and cost criteria, including the relationship between fishway bed gradient and the fish that ascend, and whether resting pools are needed. Models of species' movement patterns can inform fishway designers about likely fish response to various design options, and can lead to improved efficiency and effectiveness. Models of general movement patterns of three potamodromous non‐salmonid fishes in the Murray River, Australia, were developed from empirical data in a low‐gradient vertical‐slot fishway. The models integrate data on times of entry and exit, ascent rates, and whether fish continued to ascend during the night. These fish species did not favour resting pools. Ascent rates of fish ≥120 mm were more closely related to fish behaviour than to length; for a given fishway height, reducing bed slope by increasing the number of pools may slow the ascent of such fish, whereas enlarging pool volumes increases costs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
    
Fishways are installed worldwide to facilitate accessibility to functional habitats and to increase the ecological continuity of rivers. Their evaluations are increasing, but complete studies in the field with wild individuals are still scarce. In the lower Bocq River (Belgium), a pool type fishway was installed in 2011. A combined passive‐integrated‐transponder‐tag and radio‐telemetry system was designed and installed downstream of the dam and in the fishway to analyse fine‐scale individual fish behaviour. Three fish species (brown trout, European grayling, and barbel) were captured in the river; n = 125 fish were tagged and released downstream of the fishway. Behavioural metrics were proposed and used in order to attain a comprehensive view on the efficiency of the fishway, including attraction and entrance efficiency, searching and passage delays, and overall and adjusted passage efficiency. The results indicate a major problem in terms of attraction efficiency (48.9% for the trout, 20.5% for the grayling, and 41.2% for the barbel) and time to find the entrance of the fishway (mean 65.1 hr for the trout and 538.9 hr for the grayling). For fish that succeed to approach the entrance of the fishway, the passage efficiency was 86.9% for the trout, 55.5% for the grayling, and 7.1% for the barbel. The time taken to cross the structure was reasonable for the salmonids (mean < 1.5 hr for trout and grayling) but very long (21 hr) for the barbel. Our results underline the necessity of a holistic approach to evaluate fishway efficiency using precise comprehensive metrics and hydraulic characterization.  相似文献   

5.
    
Fishways are hydraulic structures that allow passage of fish across obstructions in rivers. Vertical slot fishways—VSFs—are considered the most efficient and least selective type of technical fishway solutions, especially due to their ability to remain effective even when significant upstream and/or downstream water level fluctuations occur. The scope of the present study is to perform numerical simulations in order to investigate and compare the hydraulic turbulent flow field in a standard and a simplified version of the most common VSF design. Implications in relation to fish swimming behaviour and fish passage performance are discussed. Different water depths (as well as discharges) were investigated, using a bed slope of 5%, as a reference for low‐gradient VSFs with a very limited selectivity that can be used in multispecies rivers in grayling‐barbel regions. Results show that maximum values of velocity, turbulent kinetic energy, and Reynolds stresses are higher in the standard design. However, corresponding to slot geometry and orientation, the direction of the main jet in the simplified design is more inclined towards the left side of the pool. This causes the eddy to split into 2 smaller ones; the minimum eddy dimension is reduced from 0.4–0.5 to 0.2–0.3 m. These dimensions are detrimental for fish passage efficiency, being more comparable with fish length (0.15–0.40 m), thus affecting migrating fish stability and orientation. Furthermore, the standard design provides a more straightforward upstream path and wider areas of low flow velocities and turbulence, useful for fish resting. Therefore, it is recommended that the standard design should be preferred over its simplified version, even if its construction costs are around 10–15% higher than the simplified one.  相似文献   

6.
    
Vertical slot fishways (VSFs) are the most efficient and least selective typology of technical fish passage, due to their ability to remain effective even when significant upstream and/or downstream water level fluctuations occur. Fishway construction costs can be reduced by increasing its bed slope, but this affects the flow field inside the pools, with higher head drops between the basins, as well as turbulence levels and flow velocities, which may affect fish passage. In light of this, a VSF was investigated by 3D numerical simulations to identify the possible effects of the bed slope (using values from 1.67% to 10%) on the flow field and subsequent implications for fish passage. A particular focus was devoted to cyprinind species, but the results can be extended to other species of similar swimming abilities and, therefore, be applicable to multispecies rivers. Flow velocity and turbulence values such as turbulent kinetic energy and Reynolds stresses were analysed from a fish passage perspective in relation to threshold values derived from previous studies. Pool areas where turbulence values are compatible with fish ability and behaviour were quantified. Maps of the location of fish‐friendly zones in the VSF pools were produced and can constitute a reference for practical applications in fishway design. The flow field generated with bed slopes lower than 6.67% is more compatible with fish swimming capabilities, because it exhibits a predominantly 2D behaviour and more suitable hydraulic conditions, whereas at higher slopes, turbulence levels in the pools increase.  相似文献   

7.
    
Dams have been implicated in the alteration of natural river processes. Quantifying spatial and temporal movement and passage patterns of large river fishes are critical for determining the extent of restricted passage and the needs for fish passage improvements. However, limited information regarding this topic exists because of the inherent difficulties associated with large river systems and assumptions associated with movement studies. Because of this lack of information, we investigated broad scale passage patterns of several riverine fish species through seven locks and dams complexes of the Upper Mississippi River using telemetry. Over the course of our 5‐year evaluation, we observed species‐specific movement and passage patterns, and how these trends were affected by factors such as water level and lock and dam management. Stationary receivers placed in a monitoring array detected a total of 1036 passage events. Eighty‐four percent of the passage occurred through all but one of the lock and dam structures during both open and closed river conditions. While 70% of the passage occurred during open river conditions, further investigation of passages that occurred during closed river conditions (when gates are extended into the water column at some level) revealed that the majority of passage occurred when the average opening for all gates ranged from 0.6 to 1.2 m. Lock usage was also quantified, and most species were not routinely using the lock chambers for passage. Ultimately, these data have shown that individuals of each study species were able to negotiate most of the locks and dams during open and closed river conditions in both directions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
    
A shift from target species to ecosystem restoration has generated interest in developing fishways that are capable of passing entire fish communities. Although a number of multispecies fishways now exist in North America, evaluations of these fishways are lacking. We used a passive integrated transponder antenna array to quantify passage success and passage duration of fish using a vertical slot fishway (85 m in length, 2.65 m elevation rise, 12 regular pools and 2 turning basins) at a low head dam on the Richelieu River in Quebec, Canada. Fourteen of the 18 tagged species re‐ascended the fishway, and passage efficiency was highly variable among species (range 25%–100%); however, it was >50% for five of the species well represented in this study (n > 10) (Atlantic salmon, channel catfish, smallmouth bass, walleye and white sucker). Passage duration was likewise highly variable both among and within species (e.g. 1.0–452.9 h for smallmouth bass, 2.4–237.5 h for shorthead redhorse). Although this fishway design was not uniformly successful in passing fish of all species, this study does reveal the species that have problems with ascent and provides an estimate on the time spent in the fishway that is an important component of passage delay. Such information could be used to inform future design refinements to facilitate passage of the entire assemblage with minimal delay. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
    
Worldwide, fishways are increasingly criticized for failing to meet conservation goals. We argue that this is largely due to the dominance of diadromous species of the Northern Hemisphere (e.g., Salmonidae) in the research that underpins the concepts and methods of fishway science and management. With highly diverse life histories, swimming abilities and spatial ecologies, most freshwater fish species do not conform to the stereotype imposed by this framework. This is leading to a global proliferation of fishways that are often unsuitable for native species. The vast majority of fish populations do not undertake extensive migrations between clearly separated critical habitats, yet the movement of individuals and the genetic information they carry is critically important for population viability. We briefly review some of the latest advances in spatial ecological modelling for dendritic networks to better define what it means to achieve effective fish passage at a barrier. Through a combination of critical habitat assessment and the modelling of metapopulations, climate change‐driven habitat shifts, and adaptive gene flow, we recommend a conceptual and methodological framework for fishway target‐setting and monitoring suitable for a wide range of species. In the process, we raise a number of issues that should contribute to the ongoing debate about fish passage research and the design and monitoring of fishways.  相似文献   

10.
    
A challenge in the design of fishways especially for large rivers is the trade-off between attraction and passability of the entrance. High flow velocities in the entrance slot generate a strong attraction flow and tend to have better attraction efficiency for upstream migration. However, these velocities may also prevent small-bodied species or juvenile fish from entering the fishway. With our experiment, we reproduced fish swimming behaviour and passage of a fishway entrance for small-bodied fish under realistic hydraulic conditions. At an entrance slot with 0.4 m width four velocities 0.8, 1.2, 1.5 and 1.8 ms−1 were investigated. In total, 326 juvenile roach (Rutilus rutilus (Linnaeus, 1758)), gudgeons (Gobio gobio (Linnaeus, 1758)) and spirlins (Alburnoides bipunctatus (Bloch, 1782)) were tested. The passage rates of the three tested species were altogether higher than would have been predicted from reported swimming capacities. They increased from gudgeons to roach and (significantly) to spirlins and we could show how passage rates of the three species decreased with increasing flow velocities, suggesting species-specific critical slot velocities. Still, these velocities are lower than those currently proposed to generate sufficient attraction flow, which may have implications for fishway design.  相似文献   

11.
    
Fishways for salmon in temperate rivers have often been successful, but salmonid‐type fishways for non‐salmonid species in tropical and subtropical rivers have frequently failed. This study assessed the effectiveness of modifying a salmonid‐type pool‐and‐weir fishway into a vertical‐slot design on a tidal barrage on the subtropical Fitzroy River, in Queensland, north‐eastern Australia. In 38 paired samples of the top and bottom of the fishway, over 16 months, 29 fish species and over 23 000 fish were collected at a maximum rate of 3400 per day. This study shows much greater potential for success with a vertical‐slot fishway as relatively few fish negotiated the original pool‐and‐weir design. Common species using the vertical‐slot fishway included blue‐catfish (Arius graeffei [Ariidae]), bony herring (Nematalosa erebi [Clupeidae]), striped mullet (Mugil cephalus [Mugilidae]), barramundi (Lates calcarifer [Centropomidae]), and long‐finned eels (Anguilla reinhardtii [Anguillidae]). Freshwater shrimp (Macrobrachium australiense [Palaemonidae]), juvenile crabs (Varuna litterata [Grapsidae]) and long‐finned elvers did not ascend the full length of the fishway and specific fishways for these species are recommended. Fish between 25 and 640 mm in length ascended the fishway, although the passage of smaller size classes of immature fish was restricted and this may be important for the sustainability of these migratory populations. The barramundi (200–640 mm) which ascended the fishway were all immature fish. However, during a period of low river flows enlarging the width of the vertical‐slot from 0.15 to 0.45 m only encouraged a small number of larger fish (890 mm maximum length) to enter. The strong diel movement patterns of many species will need to be considered in future fishway design. Blue‐catfish could ascend the fishway in 2 h, but many fish remained in the fishway and this behaviour may cause crowding and a reduction in fishway capacity. Further work is needed to assess the proportion of fish finding the fishway entrance. However, the findings suggest that vertical‐slot fishways with lower water velocities and turbulence than salmonid fishways have great potential to pass the diverse migratory fish fauna of subtropical and tropical rivers. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
大渡河安谷水电站建成后运行水位变更,竖缝式鱼道和仿自然通道下凿闸底板,降低高程,以保证水流条件。为了解改造后鱼道水力条件和过鱼效果,测量过鱼设施内的水位和流速,使用网捕法调查生态河道和过鱼设施内的鱼类特征,分析改造前后过鱼设施运行状况和水生生态调查结果的变化,得到以下主要结论:改造后鱼道和通道的运行保证率大幅提高,水动力条件接近设计效果;改造后调查区域内鱼类种类更丰富,部分洄游鱼类的种群数量明显增加;安谷水电站生态河道放水闸竖缝式鱼道和仿自然通道的渔获物物种组成有明显差异,鱼道和通道适用于不同鱼类,有效互补。  相似文献   

13.
Nearly 60,000 large dams (higher than 15 m) occur worldwide in addition to an estimated 16 million smaller impoundments with individual surface areas larger than 100 m2. The resulting habitat fragmentation threatens global riverine biodiversity and sustainable fish populations. Two opposing approaches for selecting fish passage designs to mitigate river fragmentation are possible: develop a limited number of standardized (reference) designs from which a design for a candidate dam is selected (one-size-fits-all approach) versus conduct scientific fish passage studies specific to each dam and targeted fish species (made-to-order approach). The two approaches vary in probability of effectiveness, cost of supporting biological studies, and overall project cost and schedule impact. To address this conundrum, we analyzed 73 USA dams to identify two groups that differed markedly in fish passage planning approaches. Snake River dams are similar in design, flow, geological setting, and target fish species. By contrast, Mississippi River dams are relatively dissimilar in design, flow, and geological setting but generally similar in target fish species. We conclude that the more similar a candidate dam for fish passage is to a reference set of similar dams (i.e., the Snake River dams), then the more likely fish passage technology can be successfully extrapolated to a proposed dam in the same or a nearby watershed. As a general strategy, we recommend that dams in a region be clustered using key hydrologic, structural, operational, and biological variables. These variables can be used to assign a new dam or retrofit an existing dam to a cluster to which they are most similar, thereby optimally extending existing knowledge to new applications. In the process, reliance on the less efficient and more expensive made-to-order approach can be reduced.  相似文献   

14.
仿自然通道及鱼道池室结构布置研究   总被引:1,自引:0,他引:1  
为了提高仿自然通道及鱼道设计水平,以某水电站仿自然通道工程为案例,根据其过鱼需求,提出了池室结构布置方案,并通过数值模拟及物理模型试验对其平面及三维池室流态进行了分析。结果表明:通过在仿自然通道或鱼道内部采用收缩段、侧壁设置消能墩、底部辅以条形消能墩的新型结构可使池室内部流场实现纵向分层和横向分区,可供不同游泳能力的鱼类通过。该池室结构在流速流态控制等方面较普通仿自然通道和技术型鱼道均具有优势,适合多种鱼类通过,具有推广价值。  相似文献   

15.
    
Many of the most important commercial and recreational species of the megadiverse Brazilian freshwater fishes migrate in rivers among essential habitats during all life stages. These movements, however, have been severely blocked by hundreds of hydroelectric dams and reservoirs and they will be even more obstructed due to hundreds of new developments. Fishways have been used in many countries to allow fish to pass around dams. Fishway construction is booming in Brazil, but poor understanding of migrations by Brazilian fishes has led legislators, scientists, and the public to several misconceptions about the rules of fishways in fisheries conservation. First, is a belief that fishways are only needed to facilitate upstream spawning migrations. Also, it has been suggested that upstream passage for Neotropical migrant fishes is not useful if there is no large free‐flowing stretch upstream of a dam that contains spawning habitat and has a large natural floodplain (nursery habitat). In this paper, we discuss that, in addition to providing passage for pre‐spawning migrants, upstream fishways also provide passage for other fish migrations (e.g. foraging), and that all up‐ and downstream migrations during life history need to be addressed at dams to conserve fish resources. We also argue that an upstream fishway is important even if the upstream reach does not have spawning or nursery habitats. In addition, we discuss the need for protection of downstream migrant fish, and the importance of fish behaviourists and engineers working together on fishway design and operation to solve fish passage issues. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
    
Over recent years, there has been increasing challenge to the accepted wisdom that the environmental impacts of river engineering can be adequately mitigated through the installation of infrastructure, such as fish passes. This has led to a debate on the value of fish passage with some arguing that increased research and development will advance solutions for a variety of structures that are suitable for multiple species and transferable to different regions. Others suggest that policies and management strategies should reflect the realization that current mitigation technology frequently fails and can itself have negative impacts. Meta‐analyses of the results of studies on fish passage effectiveness have led to the challenge of conventional views by highlighting lower than expected efficiencies, wide variation between and within fish pass designs, and bias towards consideration of a limited number of commercially important species mainly from northern temperate regions. Results of meta‐analyses can also be controversial, and difficulties can arise when nuances associated with individual studies are lost and when metrics used are not standardized. Intrinsic variation in fish passage efficiency between and within species due to differences in patterns of movement and motivation may not be considered, and in many situations, current metrics are not appropriate. Quantification of variation in trends in fish passage efficiency over time and with spatial scale is lacking and should be the focus of future reviews. It is time to accept that fish passage does not provide a universally effective mitigation solution, particularly when designs and strategies are transferred to other regions and species for which they were not originally designed. Admitting to cases of failure is an essential first step to advancing water resources planning and regulation based on well‐informed decision‐making processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
为了解齐口裂腹鱼在鱼道中的上溯情况,在大比尺竖缝式鱼道物理模型中开展了以齐口裂腹鱼幼鱼为过鱼对象的过鱼试验研究。试验中对通过时间、通过率和上溯轨迹进行了记录,并运用Spearman秩相关分析对齐口裂腹鱼的上溯轨迹和池室结构的水力因子(流速、紊动能、总水力应变)进行了分析。研究发现,试验用鱼通过时间平均值为132.7s,多数鱼倾向于快速通过鱼道完成上溯。试验鱼道通过率为71.9%,过鱼效果良好。多数齐口裂腹鱼上溯过程中会避开高流速区、高紊动能区和高水力应变区,在池室内齐口裂腹鱼上溯轨迹主要分布于上述参数较低的右侧回流区和隔板背水面,竖缝断面处多数齐口裂腹鱼选择上述参数相对较低的隔板侧区域通过。研究结果可为相关竖缝式鱼道设计和实践提供参考。  相似文献   

18.
    
Dams represent one of the major forms of river alteration. As these structures reach the end of their lifespan, they often require extensive refurbishments or removal. A small‐scale water supply dam in Banff National Park (Alberta, Canada) was partially removed, creating a breach that allowed water to scour a new passage resembling a nature‐like fishway. We investigated the permeability of the partially removed dam as a means of validating the conservation benefits of the partial dam removal. We quantified the proportion of bull trout (Salvelinus confluentus), a threatened species in Canada, that approached and passed the fishway using radio telemetry receiver stations. The proportion of bull trout that approached the fishway was low (37.0%; N = 27 of 73), but was consistent with upstream reference sites (33%; N = 20 of 60). For those that did approach, the proportion of bull trout that passed yielded a high passage efficiency (77.8%; N = 21 of 27 that approached). The probability that a fish passed the fishway was related to water depth and time of day. Bull trout were more likely to pass when water depths were high (>0.40 m), and at night. Passage duration ranged from 5‐mins to 13‐days, suggesting that this resident species used the fishway for a variety of purposes (e.g., station holding and foraging) and not just transiting. Some individuals underwent large‐scale movements 2‐km upstream (15.1%; N = 11 of 73), or 2‐km downstream (2.7%; N = 2 of 73) following a successful passage event. This study provides new insight on how, in some instances, a breach in a dam can function as a nature‐like fishway, accommodating year‐round stream flows and providing hydraulic conditions suitable for fish passage without costly engineering or construction.  相似文献   

19.
仿自然鱼道和结构型鱼道结合布置而成的鱼道,既具有仿自然鱼道和结构式鱼道的优点,又能满足苛刻的地形条件。针对地盘子鱼道,在设计及优化方案下分别建立比尺为1:10的整体模型,通过实测两种方案下模型水流的水位、流速及流态,论证了设计方案的合理性及优化方案的优化效果。结果表明:竖缝式和仿自然式结合布置的鱼道内水流流态良好,结构段和仿自然段采用较大底坡比进行衔接对衔接段流态并无不利影响; 各溢流槽和竖缝平均流速基本保持在0.7~1.2 m/s,大流速区主要分布在衔接段及鱼道进口附近; 与设计方案相比,优化方案中过鱼设施结构段S52~S57断面竖缝宽度增大25%,池室消能率最大降低50%;仿自然鱼道段进口处水深由1.0 m增加至1.3 m,F63~F68断面流速最大降低52%,有效保障了过鱼条件。研究结果可为设计和建设复杂场地过鱼设施提供参考。  相似文献   

20.
    
We constructed a model that predicted path selection of Atlantic salmon. Our basic assumption for the model was that Atlantic salmon optimize migration by selecting a path that minimizes water resistance. The model prediction was compared with observations in a fishway, and the results were within expectations. It appeared like the fishway design and flow configuration at our study site caused some problems for the fish to discover both of the available paths. Therefore, only 53% of female fish and 67% of male fish selected the optimal path in the beginning of the fishway, but 92% of female fish and 97% of male fish selected the optimal path at the end of the fishway. Velocity over ground was very low, which is likely because every weir in the fishway was an obstacle for the fish. This knowledge can be used to improve future fishway design, or improve flow configuration for existing fishways. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号