首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of liquid and gas velocities, particle size and volume ratio of floating bubble breakers to solid particles (Vf/Vs) on both the volumetric mass transfer coefficient, kla, and the gas-liquid interfacial area, a, have been determined in three-phase fluidized beds with floating bubble breakers. Beds having a volume ratio (Vf/Vs) of about 0.15 showed a maximum increase in both kla and a of about 30% in comparison to that in the corresponding bed without floating bubble breakers. The volumetric mass transfer coefficient in three-phase fluidized beds with or without floating bubble breakers can be estimated from the surface renewal frequency of liquid microeddies and the particle size.  相似文献   

2.
The plug flow model (PFM), overwhelmingly used to describe mass transfer in bubble columns and three-phase fluidized beds, has never been critically tested. This study analyzes the PFM single parameter, KLa, to quantify mass transfer in the forementioned systems. Particular attention is paid to the mass transfer features of the zone near the distributor (grid zone) largely ignored until now. This study, carried out under the largest gas and liquid flow rates ever published, for similar types of systems, indicates the presence of two well defined mass transfer zones. These features invalidate, for design purposes, the use of the PFM. However, it still can be used as a qualitative mass transfer indicator. This has permitted a comparison between the mass transfer efficiency of bubble columns and three-phase fluidized beds with the conclusion that three-phase fluidized bed of 0.5 cm particles can compete successfully with bubble columns.  相似文献   

3.
Liquid phase volumetric mass transfer coefficients for oxygen are determined in a three-phase fluidized bed and in a bubble column. The concept of exponential decreasing axial variation of volumetric mass transfer coefficient leads to a better representation of oxygen concentration profiles inside the column. Compared to the bubble column, kla axial variations are more important in the lower part of the fluidized bed column, where solid particles increase the coalescence phenomenum, particularly with viscous liquids.  相似文献   

4.
Effect of surfactants on liquid-side mass transfer coefficients   总被引:1,自引:0,他引:1  
In the present paper, the effect of liquid properties (surfactants) on bubble generation phenomenon, interfacial area and liquid-side mass transfer coefficient was investigated. The measurements of surface tension (static and dynamic methods), of critical micelle concentration (CMC) and of characteristic adsorption parameters such as the surface coverage ratio at equilibrium (se) were performed to understand the effects of surfactants on the mass transfer efficiency. Tap water and aqueous solutions with surfactants (cationic and anionic) were used as liquid phases and an elastic membrane with a single orifice as gas sparger. The bubbles were generated into a small-scale bubble column. The local liquid-side mass transfer coefficient (kL) was obtained from the volumetric mass transfer coefficient (kLa) and the interfacial area (a) was deduced from the bubble diameter (DB), the bubble frequency (fB) and the terminal bubble rising velocity (UB). Only the dynamic bubble regime was considered in this work (ReOR=150-1000 and We=0.002-4).This study has clearly shown that the presence of surfactants affects the bubble generation phenomenon and thus the interfacial area (a) and the different mass transfer parameters, such as the volumetric mass transfer coefficient (kLa) and the liquid-side mass transfer coefficient (kL). Whatever the operating conditions, the new kLa determination method has provided good accuracy without assuming that the liquid phase is perfectly mixed as in the classical method. The surface coverage ratio (se) proves to be crucial for predicting the changes of kL in aqueous solutions with surfactants.  相似文献   

5.
Computational Fluid Dynamics (CFD) is used to investigate mass transfer from Taylor bubbles to the liquid phase in circular capillaries. The liquid phase volumetric mass transfer coefficient kLa was determined from CFD simulations of Taylor bubbles in upflow, using periodic boundary conditions. The separate influences of the bubble rise velocity, unit cell length, film thickness, film length, and liquid diffusivity on kLa were investigated for capillaries of 1.5, 2 and diameter. The mass transfer from the Taylor bubble is the sum of the contributions of the two bubble caps, and the film surrounding the bubble. The Higbie penetration model is used to describe the mass transfer from the two hemispherical caps. The unsteady-state diffusion model of Pigford is used to describe the mass transfer to the downward flowing liquid film. The developed model for kLa is in good agreement with the CFD simulated values, and provides a practical method for estimating mass transfer coefficients in monolith reactors.  相似文献   

6.
A computer model based on the establishment of mass balance equations and on the model of fluids flow “stirred tank in series” was developed in order to calculate the ozone transfer coefficient kLa and kinetic constant kc of ozone consumption by water. On the basis of experimental data, the correlation for gas holdup εg and bubble diameter dvs, were proposed and used to calculate the specific interfacial area a. The liquid-phase mass transfer coefficient kL for ozone was evaluated from a and the kLa data.  相似文献   

7.
For the air-water-calcium alginate beads system, the effect of the presence of solids on the mass transfer characteristics in a bubble column was experimentally studied.Volumetric liquid side mass transfer coefficient, kLa, specific interfacial area, a, and hence liquid side mass transfer coefficient, kL, were determined under different solid concentrations (0, 5, and 10 vol%), superficial gas velocities (up to 0.27 cm/s) and solid sizes (1.2 and 2.1 mm diameter). The bubble characteristics, namely the interfacial area, were obtained using an image analysis technique.This technique proved to be a suitable and practical method to characterize mass transfer phenomena in bubble columns for the range of operating conditions used. The solids affect negatively kLa, decreasing both a and kL, the effect being more pronounced for the smaller particles. For these particles the variation of kLa is due to the variation of its two components, while for larger particles kLa variation is due, essentially, to changes in kL as no significant differences in a were observed.  相似文献   

8.
Mass transfer from Taylor bubbles rising in single capillaries   总被引:1,自引:0,他引:1  
Gas-liquid mass transfer from Taylor bubbles rising in 1, 2 and 3 mm diameter capillaries of circular and square cross-sections was investigated for air-water system. The liquid-phase volumetric mass transfer coefficient kLa was obtained from experimental oxygen absorption dynamics. The experimental kLa values are in good agreement with the model developed by van Baten and Krishna (2004. Chemical Engineering Science 59, 2535-2545), with the additional assumption that the dominant mass transfer contribution is to the film surrounding the bubble.  相似文献   

9.
The mean relative gas hold up εa , and the volumetric mass transfer coefficients, kLa, were measured by steady state method in a six stage countercurrent bubble column 20 cm in diameter and 381 cm high. Perforated plate trays 0.5, 1.0 and/or 3.0 mm in bore hole diameter were applied. The height of the stages were varied from 10 to 50 cm. Distilled water, salt-, methanol-, ethanol-, η -propanol-, glucose-solutions and the combination of salt and alcohol and glucose solutions were used as media.The trays with the smallest bore hole diameter and free cross sectional area are the most efficient with regard to kLa. With small bore hole diameter and free cross sectiord area of the tray as well as with coalescence suppressing media the optimal stage height is large, with large hole diameter and free cross sectional area of the tray as well as with coalescence promoting media the optimal stage height is small.  相似文献   

10.
In this work, the effects of surface-active contaminants on mass transfer coefficients kLa and kL were studied in two different bubble contactors. The oxygen transfer coefficient, kL, was obtained from the volumetric oxygen transfer coefficient, kLa, since the specific interfacial area, a, could be determined from the fractional gas holdup, ε, and the average bubble diameter, d32. Water at different heights and antifoam solutions of 0.5- were used as working media, under varying gas sparging conditions, in small-scale bubble column and rectangular airlift contactors of 6.7 and capacity, respectively. Both the antifoam concentration and the bubble residence time were shown to control kLa and kL values over a span of almost 400%. A theoretical interpretation is proposed based on modelling the kinetics of single bubble contamination, followed by sudden surface transition from mobile to rigid condition, in accordance with the stagnant cap model. Model results match experimental kL data within ±30%.  相似文献   

11.
The effects of inorganic electrolytes (NaCl, MgCl2, CaCl2) in aqueous solutions on oxygen transfer in a bubble column were studied. Electrolyte concentrations (c) below and above the critical concentrations for bubble coalescence (ctc), and six superficial gas velocities (vsg), were evaluated. The volumetric mass transfer (kLa) and the mass transfer (kL) coefficients were experimentally determined. It was found that the concentration of electrolytes reduced the kL, but the interfacial area (a) increased enough to result in a net increase of kLa. Using as independent variable a normalizing variable (cr = c/ctc), and maintaining fixed vsg, similar values of kLa were observed regardless the kind of electrolyte; the same happened for kL. This suggests that cr quantifies the structural effects that these solutes exert on mass transfer. Also, once cr = 1 was reached, no significant variations were found in kLa and kL for constant vsg. It is concluded that the gradual inhibition of bubble coalescence (cr < 1) governs the significant changes in hydrodynamics and mass transfer via the reduction of bubble size and the consequent increment of a and gas holdup (?g). Finally, regarding the effects of vsg on mass transfer, transition behaviors between those expected for isolated bubbles and bubble swarms were observed.  相似文献   

12.
The present study deals with the pressure effects on mass transfer parameters within a bubble reactor operating at pressures up to . The gas-liquid systems are N2/CO2-aqueous solution of Na2CO3-NaHCO3 and N2/CO2-aqueous solution of NaOH. A sintered powder plate is used as a gas distributor. Three parameters characterizing the mass transfer are identified and investigated with respect to pressure: the gas-liquid interfacial area a, the volumetric liquid side mass transfer coefficient kLa and the volumetric gas side mass transfer coefficient kGa. The gas-liquid absorption with chemical reaction is used and the mass transfer parameters are determined by using the model reaction between CO2 and the aqueous solutions of Na2CO3-NaHCO3 and NaOH. For a given gas mass flow rate, the interfacial area as well as the volumetric liquid mass transfer coefficient decrease with increasing operating pressure. However, for a given pressure, a and kLa increase with increasing gas mass flow rates. The mass transfer coefficient kL is independent of pressure. Furthermore, the pressure increase results in a decrease of kG and kGa for a given gas mass flow rate. The values of the interfacial area, which are obtained from both chemical systems are found to be different. These discrepancies are attributed to the choice of the liquid system in the absorption reaction model.  相似文献   

13.
The mean relative gas hold up, ?g, and the volumetric mass transfer coefficients, kLa, were measured by steady state method in the first stage of a multistage countercurrent column 20 cm in diameter. Perforated plate trays with different bore hole diameters and free cross sectional area were applied. The height of the stage was varied. Newtonian (glycerol) and pseudo plastic (CMC) solutions were used as media.In general with increasing superficial gas velocity, with decreasing bore hole diameter and free cross sectional area of the perforated platé trays as well as with decreasing concentration and viscosity kLa increases.With increasing height of the bubbling layer kLa diminishes except for glycerol, for which no or only slight influence of the bubble layer height prevails.This effect for CMC diminishes with the increase of their concentration. With increasing specific power input kLa becomes larger. At constant power input the highest kLa is attained with the smallest bore hole diameter of the trays for CMC solutions. For glycerol no such an effect was found.  相似文献   

14.
The study relates to the mass transfer and the bubble size in a non standard vessel equipped with various dual-impeller combinations. The effects of the rotational speed, gas flow rate, impeller type and diameter are investigated. The volumetric mass transfer coefficient kLa and the bubble size dbs were studied. The liquid side mass transfer coefficient kL and the volumetric interfacial area a were estimated separately. A comparison has been made with some existing correlations.  相似文献   

15.
An experimental investigation was made to measure interfacial area, a, and liquid‐side volumetric mass transfer coefficient, kLa, in a downflow bubble column by chemical methods viz., absorbing CO2 in aqueous sodium hydroxide and sodium carbonate/bicarbonate buffer solution respectively. The effect of gas and liquid flowrate and nozzle sizes on a and kLa were investigated. The experimental data obtained in the present system were analyzed and correlations were developed to predict a and kLa in terms of superficial gas velocity. The variation of a and kLa with specific power input were shown in graphical plot and compared with other gas‐liquid systems.  相似文献   

16.
The cocurrent upward mode was employed to absorb pure oxygen into water in bubble columns packed with Koch (Sulzer) motionless mixers. The liquid-side volumetric mass transfer coefficient, KLa, in the packed bubble column was found to be always larger than that in the unpacked bubble column. In the range of liquid velocities from 6.7 cm/sec to 39.9 cm/sec, the value of KLa in the packed bubble column increased with the increasing liquid velocity while that in the unpacked bubble column was almost independent of the liquid velocity. The equation of the formKLa= mνlβ? was successfully adopted to correlate the KLa data.  相似文献   

17.
18.
The gas holdup, ?, and volumetric mass transfer coefficient, kLa, were measured in a 0.051 m diameter glass column with ethanol as the liquid phase and cobalt catalyst as the solid phase in concentrations of 1.0 and 3.8 vol.‐%. The superficial gas velocity U was varied in the range from 0 to 0.11 m/s, spanning both the homogeneous and heterogeneous flow regimes. Experimental results show that increasing catalyst concentration decreases the gas holdup to a significant extent. The volumetric mass transfer coefficient, kLa, closely follows the trend in gas holdup. Above a superficial gas velocity of 0.04 m/s the value of kLa/? was found to be practically independent of slurry concentration and the gas velocity U; the value of this parameter is found to be about 0.45 s–1. Our studies provide a simple method for the estimation of kLa in industrial‐size bubble column slurry reactors.  相似文献   

19.
The mass transfer characteristics of 0.2, 0.6 and 1.0 m diameter bubble columns having a low height to diameter ratio (0.6 < H/D < 4) and operated at low superficial gas velocities (0.01 < VG < 0.08 m/s) were investigated. Different types of spargers were used to study their effect on the column performance. The values of effective interfacial area, a , and volumetric mass transfer coefficient, kL a , were measured by using chemical methods. The values of a and kL a were found to vary from 40 to 420 m2/m3 of clear liquid volume and from 0.01 to 0.16 s?1, respectively, in the range of VG, and VL covered in this investigation. The value of the liquid-side mass transfer coefficient, kL, was found to vary from 3 × 10?4 to 7 × 104 m/s. The effect of the physical properties of the system on the values of a was also investigated. The height to diameter ratio and the column diameter did not have significant effect on the values of gas holdup, a and kL a . It was found that the sparger design is not of critical importance, provided multipoint/multiorifice gas spargers are used. The comparative performance of bubble columns having low H/D with horizontal sparged contactors and tall bubble columns has been considered.  相似文献   

20.
Computational Fluid Dynamics (CFD) is used to compare the hydrodynamics and mass transfer of an internal airlift reactor with that of a bubble column reactor, operating with an air/water system in the homogeneous bubble flow regime. The liquid circulation velocities are significantly higher in the airlift configuration than in bubble columns, leading to significantly lower gas holdups. Within the riser of the airlift, the gas and liquid phases are virtually in plug flow, whereas in bubble columns the gas and liquid phases follow parabolic velocity distributions. When compared at the same superficial gas velocity, the volumetric mass transfer coefficient, kLa, for an airlift is significantly lower than that for a bubble column. However, when the results are compared at the same values of gas holdup, the values of kLa are practically identical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号