首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对国家天文台2.6~3.8GHz频谱仪在第23太阳活动周上升段(1996~1998)记录到的Ⅲ型爆发,与日冕物质抛射(CME)作了统计分析。发现微波Ⅲ型爆发可能是CME的先兆现象,并讨论了它们的辐射机制。  相似文献   

2.
对国家天文台2.6~3.8GHz频谱仪在第23太阳活动周上升段(1996~1998)记录到的Ⅲ型爆发,与日冕物质抛射(CME)作了统计分析。发现微波Ⅲ型爆发可能是CME的先兆现象,并讨论了它们的辐射机制。  相似文献   

3.
4.
统计分析了云南天文台在22周峰年期间观测到的米波Ⅲ型射电爆发与光学活动的关系,发现在230~300MHz频率范围的米波Ⅲ型爆发与Hα耀斑的关系是密切的,Ⅲ型爆发的产生与双极磁结构和复杂型黑子活动区也密切相关。并对统计结果作了讨论。  相似文献   

5.
统计分析了23周太阳活动峰年期间(1998.12~2002.12)记录到的米波Ⅱ型爆发,与Ha耀斑和日冕物质抛射(CME)事件的关系。统计发现:持续时间长的Ha耀斑和CME与Ⅱ型爆发比与Ⅲ型爆发的相关性好;伴随Ⅱ型爆发的CME可发生在Ha耀斑之前或之后,且91%的长寿命耀斑发生在CME之前。平均在前23分钟;伴随Ⅱ型爆发的Ha耀斑的能量随着CME的速度增大而变强。对这些观测特征作了定性的解释。  相似文献   

6.
位于日冕微波区的微波Ⅲ型爆发界面频率的发现   总被引:3,自引:0,他引:3  
在北京天台1.0-2.0GHz射电频谱仪记录到的1994年1月5日爆发图上,首次发现一界面频率位于1240MHz与1340MHz之间的微波Ⅲ型爆发对,其频率漂率为-0.22GHz/s和+0.23GHz/s由此推出电子加速区位于光球之上,3.7×10^4km的高度,电子加速区及Ⅲ型爆发形成区的高度范围约为1000公里,而电子束的速度相应为0.102c及0.106c。  相似文献   

7.
微波组合Ⅲ型爆发是指由低频端的微波普通Ⅲ型爆发和同时出现在高频端的微波连续U型爆发构成的组合体。微波连续U型爆发是单个微波U型爆发在同一磁环中的进一步演化的结果,它仍是Ⅲ型爆发的一个次型,因此整个微波组合Ⅲ型爆发也是Ⅲ型爆发的一个次型。微波组合Ⅲ型爆发的辐射源(即高能电子束)来自同一个加速区,只不过在与低日冕区的磁环相互作用中被分离成捕获电子和逃逸电子束,并有不同的运动轨迹,最终同时辐射产生高频端的微波连续U型爆发和低频端的微波普通Ⅲ型爆发.微波组合Ⅲ型爆发的形成与低日冕区的磁环结构密切相关,因而它是微波段的特有现象。  相似文献   

8.
统计分析了云南天文台在22周峰年期间观测到的米波Ⅲ型射电爆发与光学活动的关系,发现在230 ̄300MHz频率范围的米波Ⅲ型爆发与Hα耀斑的关系是密切的,Ⅲ型爆发的产生与双极磁结构和复杂型黑子活动区也密切相关。并对统计结果作了讨论。  相似文献   

9.
太阳射电爆发的起因:耀斑或/和日冕物质抛射   总被引:2,自引:0,他引:2  
本文分析了近二十年来的地面和空间太阳有关观测资料,得出太阳射电爆发的起因为耀斑和/ 或日冕物质抛射(CME) 而不仅仅是耀斑,这将有利于更深刻地了解太阳射电爆发和共生高能现象的物理过程  相似文献   

10.
射电Ⅳ型运动爆发同日冕物质抛射(CMEs)关系极为密切。本文基于对Ⅳ型运动爆发的研究以及CMEs开放场的物理条件,探讨了CMEs形成及抛射的物理条件。由于磁通量突然喷发,能量大量释放,在CME闭合场中的等离子体被加速,导致高能质子和高能电子被大磁环捕获。随着磁环内的热压P和磁压Pm的升高,当β>βT时磁环将炸裂,从而产生CMEs。抛射出的未离化的等离子体团将产生等离子体基波与谐波辐射。随着等离子体的不断离化,高能相对论电子绕开放磁场线作螺旋飞行,这时等离体辐射降到次要地位,回旋同步加速辐射上升到主导地位,这就是射电Ⅳ型运动爆发。如果离化的早,则在微波波段也能看到Ⅳ型运动爆发。这就是微波Ⅳ型爆发,也是微波Ⅳ型爆发罕见的原因。射电运动Ⅳ型爆发源就是日冕抛射的物质。  相似文献   

11.
射电Ⅳ型运动爆发同日冕物质抛射(CMEs)关系极为密切。本文基于对Ⅳ型运动爆发的研究以及CMEs开放场的物理条件,探讨了CMEs形成及抛射的物理条件。由于磁通量突然喷发,能量大量释放,在CME闭合场中的等离子体被加速,导致高能质子和高能电子被大磁环捕获。随着磁环内的热压P和磁压Pm的升高,当β〉βT时磁环将炸裂,从而产生CMEs。抛射出的未离化的等离子体团将产生等离子体基波与谐波辐射。随着等离子体  相似文献   

12.
云南天文台“四波段(1.42GHz,2.13GHz,2.84GHz和4.26GHz)太阳射电高时间同步观测系统”在1990.1 ̄1994.1期间,观测到5个具有短时标漂移结构的射电爆发事件,也就是微波Ⅲ型爆发。本文从中选取较典型的1991年3月13日事件,对Ⅲ型爆发的时间轮廓(持续时间,衰减时间)作了分析,并与米波,分米波和微波段其它观测结果作了一些比较,以求对长厘米 ̄短分米波段(微波低端)Ⅲ型爆  相似文献   

13.
摘要:本文统计分析了国家天文台5.2~7.6GHz频段高时间分辨率频谱仪23周太阳活动峰年期间(1999.8~2002.1)观测到的87个Ⅲ型爆发,对这些事件的频率漂移、半功率持续时间、带宽和偏振及相关事件作了详细分析。认为这些Ⅲ型爆发可能是由非热电子束引起的谐波等离子体辐射和电子回旋脉泽辐射而产生。  相似文献   

14.
本文比较了1982年2月9日同时观测到的两个爆发日珥及一次白光日冕物质抛射事件。比较表明,在研究日冕物质抛射事件与爆发日珥的关系时,爆发日珥的形状可能是一个重要的因素,它体现了局部区域磁场结构的变化。作者提出了一种可能的磁场结构模型,对观测结果给以解释。  相似文献   

15.
利用云南天文台声光频谱仪观测到的一次特殊的太阳射电米波爆发,与对应的光学活动及相关事件,我们探讨了1991年6月7日的日冕物质喷射 过程。  相似文献   

16.
17.
云南天文台“四波段(1.42GHz,2.13GHz,2.84GHz和4.26GHz)太阳射电高时间同步观测系统”在1990.1~1994.1期间,观测到5个具有短时标漂移结构的射电爆发事件,也就是微波Ⅲ型爆发。本文从中选取较典型的1991年3月13日事件,对Ⅲ型爆发的时间轮廓(持续时间,衰减时间)作了分析,并与米波,分米波和微波段其它观测结果作了一些比较,以求对长厘米~短分米波段(微波低端)Ⅲ型爆发的时间轮廓的特征有一个初步的了解,最后对爆发的物理参数作了估计。  相似文献   

18.
对北京天文台动态频谱仪1996~1999年观测到的68群Ⅲ型爆发作了统计分析,并对这些事件的频率漂移、持续时间、偏振和带宽的基本特性作了定性分析.  相似文献   

19.
详细介绍了北京天文台2.6-3.8GHz太阳射电频谱仪在1998年4月15日观测到的一群微波Ⅲ型爆发。它们具有宽频带(>100MHz)、短时标(<100ms)、高偏振(100%)、短周期脉动(百毫秒)、内向快速频率漂移(高于1GHz/s)等显著特征。讨论了它的观测特征、时间轮廓和脉动现象,认为该群微波Ⅲ型爆发起源于等离子体基波辐射,阐述了在高频范围Ⅲ型爆发起源于等离子体基波辐射的可能性。  相似文献   

20.
langmuir波与Ⅲ型爆发的因果关系的质疑   总被引:2,自引:0,他引:2  
黄光力 《天文学报》1992,33(1):101-108
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号