首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mutant strains of the methylotrophic yeast Hansenula polymorpha defective in catalase (cat) and in glucose repression of alcohol oxidase synthesis (gcr1) have been isolated following multiple UV mutagenesis steps. One representative gcr1 cat mutant C-105 grows during batch cultivation in a glucose/methanol medium. However, growth is preceded by a prolonged lag period. C-105 and other gcr1 cat mutants do not grow on methanol medium without an alternative carbon source. A large collection of second-site suppressor catalase-defective (scd) revertants were isolated with restored ability for methylotrophic growth (Mth+) in the absence of catalase activity. These Mth+ gcr1 cat scd strains utilize methanol as a sole source of carbon and energy, although biomass yields are reduced relative to the wild-type strain. In contrast to the parental C-105 strain, H2O2 does not accumulate in the methanol medium of the revertants. We show that restoration of methylotrophic growth in the suppressor strains is strongly correlated with increased levels of the alternative H2O2-destroying enzyme, cytochrome c peroxidase. Cytochrome c peroxidase from cell-free extracts of one of the scd revertants has been purified to homogeneity and crystallized.  相似文献   

2.
The enzyme catalase protects aerobic organisms from oxygen-free radical damage by converting hydrogen peroxide to molecular oxygen and water before it can decompose to form the highly reactive hydroxyl radical. Hydroxyl radicals are the most deleterious of the activated oxygen intermediates found in aerobic organisms. If formed, they can react with biological molecules in their proximity; the ensuing damage has been implicated in the increasing risk of disease and death associated with aging. To study further the regulation and role of catalase we have undertaken a molecular characterization of the Drosophila catalase gene and two potentially acatalasemic alleles. We have demonstrated that a previously existing allele, Catn4, likely contains a null mutation, a mutation which blocks normal translation of the encoded mRNA. The Catn1 mutation appears to cause a significant change in the protein sequence; however, it is unclear why this change leads to a nonfunctioning protein. Viability of these acatalasemic flies can be restored by transformation with the wild-type catalase gene; hence, we conclude that the lethality of these genotypes is due solely to the lack of catalase. The availability of flies with transformed catalase genes has allowed us to address the effect of catalase levels on aging in Drosophila. Though lack of catalase activity caused decreased viability and life span, increasing catalase activity above wild-type levels had no effect on normal life span.  相似文献   

3.
4.
Suppression of oxidative injury by viral-mediated transfer of the human catalase gene was tested in the optic nerves of animals with experimental allergic encephalomyelitis (EAE). EAE is an inflammatory autoimmune disorder of primary central nervous system demyelination that has been frequently used as an animal model for the human disease multiple sclerosis (MS). The optic nerve is a frequent site of involvement common to both EAE and MS. Recombinant adeno-associated virus containing the human gene for catalase was injected over the right optic nerve heads of SJL/J mice that were simultaneously sensitized for EAE. After 1 month, cell-specific catalase activity, evaluated by quantitation of catalase immunogold, was increased approximately 2-fold each in endothelia, oligodendroglia, astrocytes, and axons of the optic nerve. Effects of catalase on the histologic lesions of EAE were measured by computerized analysis of the myelin sheath area (for demyelination), optic disc area (for optic nerve head swelling), extent of the cellular infiltrate, extravasated serum albumin labeled by immunogold (for blood-brain barrier disruption), and in vivo H2O2 reaction product. Relative to control, contralateral optic nerves injected with the recombinant virus without a therapeutic gene, catalase gene inoculation reduced demyelination by 38%, optic nerve head swelling by 29%, cellular infiltration by 34%, disruption of the blood-brain barrier by 64%, and in vivo levels of H2O2 by 61%. Because the efficacy of potential treatments for MS are usually initially tested in the EAE animal model, this study suggests that catalase gene delivery by using viral vectors may be a therapeutic strategy for suppression of MS.  相似文献   

5.
The lipooligosaccharide (LOS) present in the outer membrane of Haemophilus ducreyi is likely a virulence factor for this sexually transmitted pathogen. An open reading frame in H. ducreyi 35000 was found to encode a predicted protein that had 87% identity with the protein product of the gmhA (isn) gene of Haemophilus influenzae. In H. influenzae type b, inactivation of the gmhA gene caused the synthesis of a significantly truncated LOS which possessed only lipid A and a single 2-keto-3-deoxyoctulosonic acid molecule (A. Preston, D. J. Maskell, A. Johnson, and E. R. Moxon, J. Bacteriol. 178:396-402, 1996). The H. ducreyi gmhA gene was able to complement a gmhA-deficient Escherichia coli strain, a result which confirmed the identity of this gene. When the gmhA gene of H. ducreyi was inactivated by insertion of a cat cartridge, the resultant H. ducreyi gmhA mutant, 35000.252, expressed a LOS that migrated much faster than wild-type LOS in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When the wild-type H. ducreyi strain and its isogenic gmhA mutant were used in the temperature-dependent rabbit model for dermal lesion production by H. ducreyi, the gmhA mutant was found to be substantially less virulent than the wild-type parent strain. The H. ducreyi gmhA gene was amplified by PCR from the H. ducreyi chromosome and cloned into the pLS88 vector. When the H. ducreyi gmhA gene was present in trans in gmhA mutant 35000.252, expression of the gmhA gene product restored the virulence of this mutant to wild-type levels. These results indicate that the gmhA gene product of H. ducreyi is essential for the expression of wild-type LOS by this pathogen.  相似文献   

6.
7.
8.
Spinocerebellar ataxia type 2 (SCA2) is caused by expansion of a CAG trinucleotide repeat located in the coding region of the human SCA2 gene. The SCA2 gene product, ataxin-2, is a basic protein with two domains (Sm1 and Sm2) implicated in RNA splicing and protein interaction. However, the wild-type function of ataxin-2 is yet to be determined. To help clarify the function of ataxin-2, we produced antibodies to three antigenic peptides of ataxin-2 and analyzed the expression pattern of ataxin-2 in normal and SCA2 adult brains and cerebellum at different developmental stages. These studies revealed that (1) both wild-type and mutant forms of ataxin-2 were synthesized; (2) the wild-type ataxin-2 was localized in the cytoplasm in specific neuronal groups with strong labeling of Purkinje cells; (3) the level of ataxin-2 increased with age in Purkinje cells of normal individuals; and (4) ataxin-2-like immunoreactivity in SCA2 brain tissues was more intense than in normal brain tissues, and intranuclear ubiquitinated inclusions were not seen in SCA2 brain tissues.  相似文献   

9.
The chiA gene of Vibrio cholerae encodes a polypeptide which degrades chitin, a homopolymer of N-acetylglucosamine (GlcNAc) found in cell walls of fungi and in the integuments of insects and crustaceans. chiA has a coding capacity corresponding to a polypeptide of 846 amino acids having a predicted molecular mass of 88.7 kDa. A 52-bp region with promoter activity was found immediately upstream of the chiA open reading frame. Insertional inactivation of the chromosomal copy of the gene confirmed that expression of chitinase activity by V. cholerae required chiA. Fluorescent analogues were used to demonstrate that the enzymatic activity of ChiA was specific for beta,1-4 glycosidic bonds located between GlcNAc monomers in chitin. Antibodies against ChiA were obtained by immunization of a rabbit with a MalE-ChiA hybrid protein. Polypeptides with antigenic similarity to ChiA were expressed by classical and El Tor biotypes of V. cholerae and by the closely related bacterium Aeromonas hydrophila. Immunoblotting experiments using the wild-type strain 569B and the secretion mutant M14 confirmed that ChiA is an extracellular protein which is secreted by the eps system. The eps system is also responsible for secreting cholera toxin, an oligomeric protein with no amino acid homology to ChiA. These results indicate that ChiA and cholera toxin have functionally similar extracellular transport signals that are essential for eps-dependent secretion.  相似文献   

10.
11.
Chronic granulomatous disease (CGD) is a rare genetic disorder in which phagocytes fail to produce superoxide because of defects in one of several components of the NADPH oxidase complex. As a result, patients develop recurrent life-threatening bacterial and fungal infections. The organisms to which CGD patients are most susceptible produce catalase, regarded as an important factor for microbial pathogenicity in CGD. To test the role of pathogen-derived catalase in CGD directly, we have generated isogenic strains of Aspergillus nidulans in which one or both of the catalase genes (catA and catB), have been deleted. We hypothesized that catalase negative mutants would be less virulent than the wild-type strain in experimental animal models. CGD mice were produced by disruption of the p47(phox) gene which encodes the 47-kD subunit of the NADPH oxidase. Wild-type A. nidulans inoculated intranasally caused fatal infection in CGD mice, but did not cause disease in wild-type littermates. Surprisingly, wild-type A. nidulans and the catA, catB, and catA/catB mutants were equally virulent in CGD mice. Histopathological studies of fatally infected CGD mice showed widely distributed lesions in the lungs regardless of the presence or absence of the catA and catB genes. Similar to the CGD model, catalase-deficient A. nidulans was highly virulent in cortisone-treated BALB/c mice. Taken together, these results indicate that catalases do not play a significant role in pathogenicity of A. nidulans in p47(phox)-/- mice, and therefore raise doubt about the central role of catalases as a fungal virulence factor in CGD.  相似文献   

12.
The purpose of this study was to elucidate the genetic origin of minor histocompatibility (H) antigens. Toward this end common inbred mouse strains, distinct subspecies, and species of the subgenus Mus were examined for expression of various minor H antigens. These antigens were encoded by the classical minor H loci H-3 and H-4 or by newly identified minor H antigens detected as a consequence of mutation. Both minor H antigens that stimulate MHC class I-restricted cytotoxic T cells (Tc) and antigens that stimulate MHC class II-restricted helper T cells (Th) were monitored. The results suggested that strains of distinct ancestry commonly express identical or cross-reactive antigens. Moreover, a correlation between the lack of expression of minor H antigens and ancestral heritage was observed. To address whether the antigens found on unrelated strains were allelic with the sensitizing minor H antigens or a consequence of antigen cross-reactivity, classical genetic segregation analysis was carried out. Even in distinct subspecies and species, the minor H antigens always mapped to the site of the appropriate minor H locus. Together the results suggest: 1) minor H antigen sequences are evolutionarily stable in that their pace of antigenic change is slow enough to predate subspeciation and speciation; 2) the minor H antigens originated in the inbred strains as a consequence of a rare polymorphism or loss mutation carried in a founder mouse stock that caused the mouse to perceive the wild-type protein as foreign; 3) there is a remarkable lack of antigenic cross-reactivity between the defined minor H antigens and other gene products.  相似文献   

13.
To investigate the pathogenicity of Aspergillus fumigatus mutants lacking putative virulence factors, we have developed a new murine model of invasive pulmonary aspergillosis based on neutropenia, the major factor predisposing patients to this infection. Mice were treated with cyclophosphamide and inoculated by the intranasal route with 5 x 10(3) conidia, a significant reduction from inoculum levels used in previous models. Evidence for the production of the extracellular alkaline protease (Alp) in lung tissue was obtained by using a fungal transformant harboring an alp::lacZ reporter gene fusion. The pathogenicities of single mutant strains lacking either Alp or the ribotoxin restrictocin and of a double mutant strain lacking both proteins were assessed in this infection model. There were no significant differences between the mutant and the wild-type strains in terms of mortality or histological-features. Inoculations with mixtures of conidia showed that the double mutant strain is slightly less virulent than the wild-type strain. We conclude that Alp and restrictocin are not important virulence determinants in pulmonary infection.  相似文献   

14.
Contact-inhibited catalase-deficient fibroblast cell strain has been established from the homozygous hypocatalasemic C3H/Csb mutant mouse. This cell strain has low level of catalase enzyme activity and has normal level of enzyme activities of both glutathione peroxidase and superoxide dismutase. Catalase-deficient C3H/Csb mutant cell strain is markedly more sensitive to the toxicity of hydrogen peroxide compared to wild-type C3H/Csa cell strain. In addition, mutant cell strain is sensitive to X-rays and near-UV compared to wild-type cell strain, but shows the same sensitivities to topoisomerase II inhibitors, adriamycin and 4'-(9-acridinylamino) methanesulfon-m-anisidide (m-AMSA), and the DNA cross-linking agents, cisdiamminedichloroplatinum (II) (cis-Pt) and trans-diamminedichloroplatinum (II) (trans-Pt). These cell strains will be of use in the study of the roles which catalase plays in the intracellular prevention of DNA damage induced by oxidative stress.  相似文献   

15.
Virginiae butanolides (VBs), which are among the butyrolactone autoregulators of Streptomyces species, act as a primary signal in Streptomyces virginiae to trigger virginiamycin biosynthesis and possess a specific binding protein, BarA. To clarify the in vivo function of BarA in the VB-mediated signal pathway that leads to virginiamycin biosynthesis, two barA mutant strains (strains NH1 and NH2) were created by homologous recombination. In strain NH1, an internal 99-bp EcoT14I fragment of barA was deleted, resulting in an in-frame deletion of 33 amino acid residues, including the second helix of the probable helix-turn-helix DNA-binding motif. With the same growth rate as wild-type S. virginiae on both solid and liquid media, strain NH1 showed no apparent changes in its morphological behavior, indicating that the VB-BarA pathway does not participate in morphological control in S. virginiae. In contrast, virginiamycin production started 6 h earlier in strain NH1 than in the wild-type strain, demonstrating for the first time that BarA is actively engaged in the control of virginiamycin production and implying that BarA acts as a repressor in virginiamycin biosynthesis. In strain NH2, an internal EcoNI-SmaI fragment of barA was replaced with a divergently oriented neomycin resistance gene cassette, resulting in the C-terminally truncated BarA retaining the intact helix-turn-helix motif. In strain NH2 and in a plasmid-integrated strain containing both intact and mutated barA genes, virginiamycin production was abolished irrespective of the presence of VB, suggesting that the mutated BarA retaining the intact DNA-binding motif was dominant over the wild-type BarA. These results further support the hypothesis that BarA works as a repressor in virginiamycin production and suggests that the helix-turn-helix motif is essential to its function. In strain NH1, VB production was also abolished, thus indicating that BarA is a pleiotropic regulatory protein controlling not only virginiamycin production but also autoregulator biosynthesis.  相似文献   

16.
A new gene, mutK, of Vibrio cholerae, encoding a 19-kDa protein which is involved in repairing mismatches in DNA via a presumably methyl-independent pathway, has been identified. The product of the mutK gene cloned in either high- or low-copy-number vectors can reduce the spontaneous mutation frequency of Escherichia coli mutS, mutL, mutU, and dam mutants. The spontaneous mutation frequency of a chromosomal mutK knockout mutant was almost identical to that of wild-type V. cholerae cells, indicating that when the methyl-directed mismatch repair is blocked, the repair potential of MutK becomes apparent. The complete nucleotide sequence of the mutK gene has been determined, and the deduced amino acid sequence showed three open reading frames (ORFs), of which the ORF3 represents the mutK gene product. The mutK gene product has no significant homology with any of the proteins deposited in the EMBL data bank. ORF2, located upstream of mutK, encodes a 14-kDa protein which has more than 70% homology with a hypothetical protein found only downstream of the E. coli vsr gene. ORF1, located farther upstream of mutK, has more than 80% homology with a major cold shock protein found in several bacteria. Downstream of mutK, a partial ORF having 60% homology with an RNA methyltransferase has been identified. The mutK gene has recently been positioned in the ordered cloned DNA map of the genome of the V. cholerae strain from which the gene was isolated (10).  相似文献   

17.
Two toluene-sensitive mutants were generated from Pseudomonas putida IH-2000, the first known toluene-tolerant isolate, by Tn5 transposon mutagenesis. These mutants were unable to grow in the presence of toluene (log P(ow) 2.8) but they could grow in medium overlaid with organic solvents having a log P(ow) value higher than that of toluene such as p-xylene (log P(ow) 3.1), cyclohexane (log P(ow) 3.4) and n-hexane (log P(ow) 3.9). The Tn5 transposable element knocked out a cyoB-like gene in one mutant and a cyoC-like gene in the other mutant. Seven open reading frames were found in a 5.5-kb region containing the cyoB- and cyoC-like genes of strain IH-2000. ORFs 3.7 showed significant identity to the cyoABCDE gene products of Escherichia coli, but ORFs 1 and 2 showed no significant homology to any protein reported so far. The growth patterns of the Tn5 mutants with the inactivated cyo-like gene were similar to that of the wild-type strain in the absence of organic solvents, although the doubling times were slightly longer than that of the wild-type strain. Our findings indicate that cyo is an important gene for toluene tolerance, although its role is still unclear.  相似文献   

18.
Little is known of the pathophysiology of invasive pulmonary aspergillosis (IPA), an opportunistic fungal infection usually caused by Aspergillus fumigatus. It has been suggested that the ability of the fungus to degrade elastin may aid its invasion and growth in lung tissue. We have described previously the construction of a strain of A. fumigatus in which the gene encoding an alkaline protease, AFAlp, had been disrupted (C.M. Tang, J. Cohen, and D.W. Holden, Mol. Microbiol. 6:1663-1671, 1992); this mutant is deficient in extracellular proteolytic and elastinolytic activity over a broad pH range. In this study, we compared the pathogenicity of this and another AFAlp disruptant with their isogenic, elastase-producing parental strains in two murine models of IPA. In both models, animals were inoculated via the respiratory tract. In the first model, the inoculum was delivered as airborne conidia and animals developed signs of respiratory distress within 2 to 4 days. In the second model, conidia were administered intranasally as a suspension and the disease developed over a 2-week period. No difference was observed between the wild-type and AFAlp disruptants in terms of mortality, and elastin breakdown was detected in lung tissue from animals inoculated with all four strains. We conclude that AFAlp is not a virulence determinant in these models of IPA.  相似文献   

19.
Five plastocyanin-deficient mutants were identified from a population of UV-mutagenized Chlamydomonas reinhardtii cells. Genetic complementation experiments indicated that four mutants represented alleles at the PCY1 locus (pcy1-2, pcy1-3, pcy1-4, and pcy1-5). Sequence analysis confirmed that two strains, pcy1-2 and pcy1-3, carry a frameshift (-1) and a nonsense mutation, respectively, while strains pcy1-4 and pcy1-5 synthesize an extended protein as a result of read-through mutations at the stop codon. The C-terminal extension does not affect synthesis or processing of the pre-proteins, but the polypeptides are rapidly degraded after the second (lumenal) processing event. The frameshift mutation in pcy1-2 results in loss of Pcy1 mRNA, as noted previously for strain ac208 (pcy1-1), but the abundance of Pcy1 mRNA in strain pcy1-3, which carries a nonsense mutation at codon 26, is unaffected relative to wild-type cells. The decreased abundance of frameshifted Pcy1 mRNA is attributed to increased degradation rather than decreased synthesis, since the mRNAs can be stabilized by treatment of cells with cycloheximide or anisomycin. The fifth strain has a wild-type plastocyanin-encoding gene, but the strain accumulates apoplastocyanin at the expense of holoplastocyanin. We suggest that the mutation identifies a new locus (PCY2) whose function is required for normal holoplastocyanin accumulation. Like ac208 (pcy1-1), several of the new mutants were suppressed spontaneously owing to accumulation of cytochrome c6 (a functional substitute for plastocyanin). The suppressor mutation(s) displayed Mendelian inheritance and segregated independently from the PCY1 locus, which confirms that regulation of Cyc6 expression is not tightly linked to plastocyanin function.  相似文献   

20.
The biological properties of wild-type A75/17 and cell culture-adapted Onderstepoort canine distemper virus differ markedly. To learn more about the molecular basis for these differences, we have isolated and sequenced the protein-coding regions of the attachment and fusion proteins of wild-type canine distemper virus strain A75/17. In the attachment protein, a total of 57 amino acid differences were observed between the Onderstepoort strain and strain A75/17, and these were distributed evenly over the entire protein. Interestingly, the attachment protein of strain A75/17 contained an extension of three amino acids at the C terminus. Expression studies showed that the attachment protein of strain A75/17 had a higher apparent molecular mass than the attachment protein of the Onderstepoort strain, in both the presence and absence of tunicamycin. In the fusion protein, 60 amino acid differences were observed between the two strains, of which 44 were clustered in the much smaller F2 portion of the molecule. Significantly, the AUG that has been proposed as a translation initiation codon in the Onderstepoort strain is an AUA codon in strain A75/17. Detailed mutation analyses showed that both the first and second AUGs of strain A75/17 are the major translation initiation sites of the fusion protein. Similar analyses demonstrated that, also in the Onderstepoort strain, the first two AUGs are the translation initiation codons which contribute most to the generation of precursor molecules yielding the mature form of the fusion protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号