首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amide-based ligands for anion coordination   总被引:1,自引:0,他引:1  
Anion recognition is an active area of research in supramolecular chemistry. The rapidly increasing amount of structural data now allows anion coordination chemistry to be formalized in terms of coordination numbers and geometries based on hydrogen-bonding interactions between the host (ligand) and the guest (anion). This Minireview targets just one class of anion receptors, namely, amide-based ligands. The structural data for a series of five anion shapes are compiled according to coordination number, and distinct commonalities are observed within a given anion topology. The results also indicate a number of similarities between the coordination of anions and transition-metal ions.  相似文献   

2.
3.
The chemistry of transition metal dithiolene complexes containing N coordinating groups and the corresponding TTF donors, is reviewed starting from the ligand synthesis to the coordination structures where these dithiolene complexes are used as bridging units. The dithiolene ligands containing N coordinating atoms present two coordination poles which can selectively bind different metals and act as bridging units in a variety of coordination architectures. The transition metal dithiolene complexes based on these N containing ligands and the corresponding TTF donors can be themselves regarded as ligands. These can be used to coordinate other metals, potentially leading to a diversity of hetero metallic coordination architectures. With the use of appropriate auxiliary ligands they can lead to discrete metal complexes. In addition they can lead to more extended polymeric structures of different dimensionality such as 1D chains, 2D layers or even 3D polymers can also be obtained.  相似文献   

4.
金属-配体间的配位作用是超分子化学中最重要的相互作用之一, 寡聚吡啶配体可以与许多过渡金属离子配位, 形成具有独特磁、光物理和电化学性质的过渡金属络合物, 因此联三吡啶配体的合成及其过渡金属络合物性能研究引起化学家的广泛关注. 综述了联三吡啶配体及其衍生物的合成方法, 主要包括成环缩合反应、过渡金属催化的偶联反应以及其它方法, 并选取具有代表性的实例对联三吡啶配体的结构和合成方法进行详细地阐述.  相似文献   

5.
This review covers selected surfactant ligands that undergo a change in aggregate morphology upon coordination of a metal ion, with a particular focus on coordination-induced micelle-to-vesicle transitions. The surfactants include microbially produced amphiphilic siderophores, as well as synthetic amphiphilic ligands. The mechanism of the metal-induced phase change is considered in light of the coordination chemistry of the metal ions, the nature of the ligands, and changes in molecular geometry that result from metal coordination. Of particular interest are biologically produced amphiphiles that coordinate transition metal ions and amphiphilic ligands of relevance to bioinorganic chemistry.  相似文献   

6.
Coordination polymers offer a significant potential for applications in adsorption, guest and anion recognition and sensing. Their structure commonly provides binding sites for such specific interactions as pi-pi stacking and XH...pi hydrogen bonding. The latter reflects the ability of the pi-cloud to interact with positively polarized atoms. An electrostatic interaction between anionic species and electron deficient heterocycles, which parallels the above binding scheme, is also possible and very recently the existence of anion-pi interactions was proved in the solid state and in solution. This effect may be significant also for biomolecule/solution interfaces, as it occurs in protein structures. In fact, such interactions could be especially relevant for host-guest chemistry of coordination polymers, particularly for functionalization of hydrophobic crystal cavities and for the design of geometrically rigid anion receptors. However, typical electron deficient heterocycles such as 1,3,5-triazines and 1,2,4,5-tetrazines are very weak donors and they are hardly suitable for bridging metal ions and the generation of coordination frameworks. As a system that combines efficient donor properties towards transition metal ions and a pronounced ability for anion-pi interactions we have developed unsubstituted pyridazino[4,5-d]pyridazine, which was readily accessible by a novel one-pot synthesis involving inverse electron demand Diels-Alder cycloaddition (Scheme 1). Unusual anion binding properties of the ligand may be clearly related to its electron-deficiency (LUMO energy -1.591 vs. -0.288 eV for the parent pyridazine), influenced also by N-coordination to such Lewis acids as metal ions.  相似文献   

7.
Phosph(III)azanes, featuring the heterocyclobutane P2N2 ring, have now been established as building blocks in main-group coordination and supramolecular compounds. Previous studies have largely involved their use as neutral P-donor ligands or as anionic N-donor ligands, derived from deprotonation of amido-phosphazanes [RNHP(μ-NR)]2. The use of neutral amido-phosphazanes themselves as chelating, H-bond donors in anion receptors has also been an area of recent interest because of the ease by which the proton acidity and anion binding constants can be modulated, by the incorporation of electron-withdrawing exo- and endo-cyclic groups (R) and by the coordination of transition metals to the ring P atoms. We observed recently that the effect of P,N-chelation of metal atoms to the P atoms of cis-[(2-py)NHP(μ-NtBu)]2 (2-py=2-pyridyl) not only pre-organises the N−H functionality for optimum H-bonding to anions but also results in a large increase in anion binding constants, well above those for traditional organic receptors like squaramides and ureas. Here, we report a broader investigation of ligand chemistry of [(2-py)NHP(μ-tNBu)]2 (and of the new quinolyl derivative [(8-Qu)NHP(μ-NtBu)]2 (8-Qu=8-quinolyl). The additional N-donor functionality of the heterocyclic substituents and its position has a marked effect on the anion and metal coordination chemistry of both species, leading to novel structural behaviour and reactivity compared to unfunctionalized counterparts.  相似文献   

8.
The coordination chemistry of glutathione reduced (GSH) is of great importance as it acts as excellent model system for the binding of metal ions. The GSH complexation with metal ions is involved in the toxicology of different metal ions. Its coordination behaviour for soft metal ions and hard metal ions is found different because of the structure of GSH and its different potential binding sites. In our work we have studied two chemically dissimilar metal ions viz. Pr(III), which prefer hard donor site like carboxylic groups and Zn(II) the soft metal ion which prefer peptide-NH and sulphydryl groups. The absorption difference and comparative absorption spectroscopy involving 4f-4f transitions of the heterobimetallic Complexation of GSH with Pr(III) and Zn(II) has been explored in aqueous and aquated organic solvents. The variation in the energy parameters like Slater-Condon (F(K)), Racah (E(K)) and Lande (xi(4f)), Nephelauxetic parameter (beta) and bonding parameter (b(1/2)) are computed to explain the nature of complexation.  相似文献   

9.
The synthesis of a series of phosphine-functionalised macrocycles, 1–6 , is described. The combination of N-and O-sites with P- and S-sites provides ligands which may bind transition or non-transition metal ions; as a consequence, they give access to dinuclear complexes containing both a Lewis acid and a redox metallic site. Compounds 1,2 and 6 are heterodinucleating ligands capable of binding two dissimilar metals in proximity. Macrocycles 3–5 are homotopic ligands which may form homodinuclear complexes of transition metals.  相似文献   

10.
This review describes the design of novel ion recognition systems based on salen (H2salen?=?N,N′-disalicylideneethylenediamine) or related ligands. The phenoxo groups of the salen-based metallohosts play an important role in the ion recognition because the phenoxo groups can further coordinate to metal ions in a bridging fashion. In particular, the integration of two or more salen-type coordination sites in a cyclic fashion is effective for the construction of the metallohosts. They show unique multi-metal complexation behavior and binding selectivities due to the phenoxo-bridged structures. The peripheral salen-type sites are suitable for binding to d-block transition metal ions and the central O6 (or larger) site is for the group 1–3 metals. Acyclic oligo(salen) molecules are also effective for obtaining metallohosts. The metalation of a bis(salen)-type ligand with d-block metals leads to a trinuclear complex with a C-shaped structure, which can selectively recognize Ca2+ and lanthanide(III) ions via a unique metal exchange process. The longer oligo(salen) ligands form a helical structure when they recognize the La3+ or Ba2+ ion in the presence of the zinc(II) ion. The helix inversion behavior of the helical metal complexes due to the labile character of the coordination bonds is successfully utilized for the dynamic helicity control. The transformation of the acyclic ligand into cyclic ones via olefin metathesis significantly changes the binding selectivity.  相似文献   

11.
Using a modified quadrupole ion trap mass spectrometer, a series of metal complex ions have been reacted with acetonitrile in the gas phase. Careful control of the coordination number and the type of coordinating functionality in diethylenetriamine-substituted ligands enable the effects of the coordination sphere on metal complex reactivity to be examined. The association reaction kinetics of acetonitrile with these pentacoordinate complexes are followed in order to obtain information about the starting complexes and the reaction dynamics. The kinetics and thermodynamics of acetonitrile addition to the metal complex ions are strongly affected by the chemical environment around the metal center such that significant differences in reactivity are observed for Co(II) and Cu(II) complexes with various coordination spheres. When thiophene, furan, or benzene moieties are present in the coordination sphere of the complex, addition of two acetonitrile molecules is readily observed. In contrast, ligands with better sigma donors react mainly to add one acetonitrile molecule. Among the ligands with good sigma donors, a clear trend in reactivity is observed in which complexes with nitrogen-containing ligands are the least reactive, sulfur-containing complexes are more reactive, and oxygen-containing complexes are the most reactive. In general, equilibrium and reaction rate constants seem to be consistent with the hard and soft acid and base (HSAB) principle. Interestingly, the presence of certain groups (e.g., pyridine and imidazole) in the coordination sphere clearly can change the acid character of the metal as seen by their effect on the binding properties of other functional groups in the same ligand. Finally, we conclude that because complexes with different coordination spheres react to noticeably different extents, ion-molecule (I-M) reactions may be potentially useful for obtaining coordination structure information for transition metal complexes.  相似文献   

12.
Introducing metal ion coordination as bonding motive into polymer architectures provides new structures and properties for polymeric materials. The metal ions can be part of the backbone or of the side-chains. In the case of linear metallo-polymers the repeat unit bears at least two metal ion receptors in order to facilitate metal-ion induced self-assembly. If the binding constants are sufficiently high, macromolecular assemblies will form in a solution. Likewise, polymeric networks can be formed by metal ion induced crosslinking. The metal ion coordination sites introduce dynamic features, e.g. for self-healing or responsive materials, as well as additional functional properties including spin-crossover, electro-chromism, and reactivity. Terpyridines have attracted attention as receptors in metallo-polymers due to their favorable properties. It is well suited to assemble linear rigid-rod like metallo-polymers in case of rigid ditopic ligands. Terpyridine binds a large number of metal ions and are readily functionalized giving rise to a plethora of available ligands as components in metallo-polymers. By the judicious choice of the metal ions, the design of the ligands, the counter ions and the boundary conditions of self-assembly, the final structure and properties of the resulting metallo-polymers can be tailored at all length scales. Here, we review recent activities in the area of metallo-polymers based on terpyridines as central metal ion receptors.  相似文献   

13.
The formation and dissociation of dimer complexes consisting of a transition metal ion and two polyether ligands is examined in a quadrupole ion trap mass spectrometer. Reactions of three transition metals (Ni, Cu, Co) with three crown ethers and four acyclic ethers (glymes) are studied. Singly charged species are created from ion-molecule reactions between laser-desorbed monopositive metal ions and the neutral polyethers. Doubly charged complexes are generated from electrospray ionization of solutions containing metal salts and polyethers. For the singly charged complexes, the capability for dimer formation by the ethers is dependent on the number of available coordination sites on the ligand and its ability to fully coordinate the metal ion. For example, 18-crown-6 never forms dimer complexes, but 12-crown-4 readily forms dimers. For the more flexible acyclic ethers, the ligands that have four or more oxygen atoms do not form dimer complexes because the acyclic ligands have sufficient flexibility to wrap around the metal ion and prevent attachment of a second ligand. For the doubly charged complexes, dimers are observed for all of the crown ethers and glymes, thus showing no dependence on the flexibility or number of coordination sites of the polyether. The nonselectivity of dimer formation is attributed to the higher charge density of the doubly charged metal center, resulting in stronger coordination abilities. Collisionally activated dissociation is used to evaluate the structures of the metal-polyether dimer complexes. Radical fragmentation processes are observed for some of the singly charged dimer complexes because these pathways allow the monopositive metal ion to attain a more favorable 2 + oxidation state. These radical losses are observed for the dimer complexes but not for the monomer complexes because the dimer structures have two independent ligands, a feature that enhances the coordination geometry of the complex and allows more flexibility for the rearrangements necessary for loss of radical species. Dissociation of the doubly charged complexes generated by electrospray ionization does not result in losses of radical neutrals because the metal ions already exist in favorable 2+ oxidation states.  相似文献   

14.
The coordination chemistry of an N-heterocyclic phosphenium (NHP)-containing bis(phosphine) pincer ligand has been explored with Pt(0) and Pd(0) precursors. Unlike previous compounds featuring monodentate NHP ligands, the resulting NHP Pt and Pd complexes feature pyramidal geometries about the central phosphorus atom, indicative of a stereochemically active lone pair. Structural, spectroscopic, and computational data suggest that the unusual pyramidal NHP geometry results from two-electron reduction of the phosphenium ligand to generate transition metal complexes in which the Pt or Pd centers have been formally oxidized by two electrons. Interconversion between planar and pyramidal NHP geometries can be affected by either coordination/dissociation of a two-electron donor ligand or two-electron redox processes, strongly supporting an isolobal analogy with the linear (NO(+)) and bent (NO(-)) variations of nitrosyl ligands. In contrast to nitrosyls, however, these new main group noninnocent ligands are sterically and electronically tunable and are amenable to incorporation into chelating ligands, perhaps representing a new strategy for promoting redox transformations at transition metal complexes.  相似文献   

15.
The metal coordination patterns of hypoxanthine, xanthine and related oxy-purines have been reviewed on the basis of the structural information available in the Cambridge Structural Database (CSD), including also the most recent reports founded in SciFinder. Attention is paid to the metal ion binding modes and interligand interactions in mixed-ligand metal complexes, as well as the possibilities of metal binding of the exocyclic-O atoms. The information in CSD is also reviewed for the complexes of adenine in cationic, neutral and anionic forms with every metal ion. In contrast to the scarce structural information about hypoxanthine and related complexes, large structural information is available for adenine complexes with a variety of metals that reveals some correlations between the crystal–chemical properties of metal ions. Three aspects are studied in deep: the coordination patterns, the interligand interactions influencing the molecular recognition in mixed-ligand metal complexes and the connectivity between metals for different adenine species, thus supporting its unique versatility as ligand. When possible, the overall behaviour showed by adenine metal complexes is discussed according to the HSAB Pearson criteria and the tautomeric behaviour observed for each protonated species of adenine. The differences between the roles of adenine and the referred oxypurines ligands are underlined.  相似文献   

16.
Amyloid precursor protein (APP) plays a key role in Alzheimer's disease (AD), although the function of this membrane protein is still unclear. Metal ions are implicated in AD and they also interact with APP. APP possesses a strong ZnII binding site, which is evolutionary conserved. In this paper a synthetic peptide, APP170-188, with a sequence corresponding to the conserved ZnII-binding domain of APP, was synthesised and its metal-binding properties analysed. Titration experiments pointed to the binding of a stoichiometric amount of divalent ions. Further studies indicated that the binding of divalent metals like ZnII, CdII and CoII induces the dimerisation of the peptide. This dimer contains a dinuclear cluster in which the two divalent metals are bridged by two thiolate ligands from cysteine residues. The other two ligands of the tetrahedral coordination sites of each metal ion are terminal thiolate ligands. This structure was supported by the following arguments. The complex formed with CoII presents the characteristic features for tetrahedral tetrathiolate coordination in its UV-visible spectrum. The sequence of APP170-188 contains only three cysteine residues, which is incompatible with a monomeric CoII-APP170-188 complex. EPR measurements of the complex with one equivalent of CoII show almost no signal at 4 K, which is compatible with an antiferromagnetic spin-coupling of the metal ions in a cluster structure. Size-exclusion chromatography indicated that the elution time for the complexes with ZnII and CdII corresponds to the expected molecular weight of a dimer. The circular dichroism (CD) spectrum of the complex with one equivalent of CdII shows a band at 265 nm+, and an ellipticity similar to those observed for similar CdII-thiolate clusters. Possible biological implications of the ZnII binding site and the metal-induced dimerisation are discussed.  相似文献   

17.
By tuning the length and rigidity of the spacer of bis(biurea) ligands L, three structural motifs of the A2L3 complexes (A represents anion, here orthophosphate PO43?), namely helicate, mesocate, and mono‐bridged motif, have been assembled by coordination of the ligand to phosphate anion. Crystal structure analysis indicated that in the three complexes, each of the phosphate ions is coordinated by twelve hydrogen bonds from six surrounding urea groups. The anion coordination properties in solution have also been studied. The results further demonstrate the coordination behavior of phosphate ion, which shows strong tendency for coordination saturation and geometrical preference, thus allowing for the assembly of novel anion coordination‐based structures as in transition‐metal complexes.  相似文献   

18.
The use of polynitrile anions as ligands (L) either alone or in combination with neutral co-ligands (L′) is a very promising and appealing strategy to get molecular architectures with different topologies and dimensionalities thanks to their ability to coordinate and bridge metal ions in many different ways. The presence of several potentially coordinating nitrile groups (or even other donor groups as –OH, –SH or –NH2), their rigidity and their electronic delocalization allow the synthesis of original magnetic high dimensional coordination polymers with transition metals ions. Furthermore, these ligands have shown coordinating and bridging capabilities in novel discrete and polymeric bistable materials (materials showing original magnetic behaviours or spin crossover (SCO) transitions). Here we report an overview of the results obtained with some of these modified polynitrile ligands, showing their rich coordination chemistry and their crucial role in new molecular materials exhibiting unusual magnetic transitions.  相似文献   

19.
Polymetallic nanodimensional assemblies have been prepared via metal directed assembly of dithiocarbamate functionalized cavitand structural frameworks with late transition metals (Ni, Pd, Cu, Au, Zn, and Cd). The coordination geometry about the metal centers is shown to dictate the architecture adopted. X-ray crystallographic studies confirm that square planar coordination geometries result in "cagelike" octanuclear complexes, whereas square-based pyramidal metal geometries favor hexanuclear "molecular loop" structures. Both classes of complex are sterically and electronically complementary to the fullerenes (C(60) and C(70)). The strong binding of these guests occurred via favorable interactions with the sulfur atoms of multiple dithiocarbamate moieties of the hosts. In the case of the tetrameric copper(II) complexes, the lability of the copper(II)-dithiocarbamate bond enabled the fullerene guests to be encapsulated in the electron-rich cavity of the host, over time. The examination of the binding of fullerenes has been undertaken using spectroscopic and electrochemical methods, electrospray mass spectrometry, and molecular modeling.  相似文献   

20.
Self-assembly of coordination frameworks exhibiting original architectures is an active area of research. Generally, such assemblies are constructed from organic spacers and transition metals of different geometrical structures. Herein, we report a novel class of supramolecular coordination assemblies with organometallic linkers based on metalated quinonoid and thioquinonoid complexes that serve as spacers. The organometallic ligands are stable and have the general formula [Cp*M(eta(4)-benzoquinone)] (o- and p-benzoquinone, Cp*=C(5)Me(5), M=Rh, Ir) and [Cp*Ir(eta(4)-thiobenzoquinone)] (o- and p-thiobenzoquinone). These units bind through both oxygen or sulfur atoms to metal ions of different coordination geometry, such as Cu(I), Ag(I), and Pt(II), to generate supramolecular coordination networks, with the metalated quinonoid or thioquinonoid linkers acting as backbones and the metal centers as nodes. This novel family of supramolecular assemblies exhibits short pi-pi and MM interactions. These results illustrate successfully the role of the organometallic linkers to produce an impressive range of novel supramolecular architectures that hold promise for the development of functional materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号