首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
Recent genomic surveys have produced high-resolution haplotype information, but only in a small number of human populations. We report haplotype structure across 12 Mb of DNA sequence in 927 individuals representing 52 populations. The geographic distribution of haplotypes reflects human history, with a loss of haplotype diversity as distance increases from Africa. Although the extent of linkage disequilibrium (LD) varies markedly across populations, considerable sharing of haplotype structure exists, and inferred recombination hotspot locations generally match across groups. The four samples in the International HapMap Project contain the majority of common haplotypes found in most populations: averaging across populations, 83% of common 20-kb haplotypes in a population are also common in the most similar HapMap sample. Consequently, although the portability of tag SNPs based on the HapMap is reduced in low-LD Africans, the HapMap will be helpful for the design of genome-wide association mapping studies in nearly all human populations.  相似文献   

2.
The locations and properties of common deletion variants in the human genome are largely unknown. We describe a systematic method for using dense SNP genotype data to discover deletions and its application to data from the International HapMap Consortium to characterize and catalogue segregating deletion variants across the human genome. We identified 541 deletion variants (94% novel) ranging from 1 kb to 745 kb in size; 278 of these variants were observed in multiple, unrelated individuals, 120 in the homozygous state. The coding exons of ten expressed genes were found to be commonly deleted, including multiple genes with roles in sex steroid metabolism, olfaction and drug response. These common deletion polymorphisms typically represent ancestral mutations that are in linkage disequilibrium with nearby SNPs, meaning that their association to disease can often be evaluated in the course of SNP-based whole-genome association studies.  相似文献   

3.
Recombination and linkage disequilibrium in Arabidopsis thaliana   总被引:4,自引:0,他引:4  
Linkage disequilibrium (LD) is a major aspect of the organization of genetic variation in natural populations. Here we describe the genome-wide pattern of LD in a sample of 19 Arabidopsis thaliana accessions using 341,602 non-singleton SNPs. LD decays within 10 kb on average, considerably faster than previously estimated. Tag SNP selection algorithms and 'hide-the-SNP' simulations suggest that genome-wide association mapping will require only 40%-50% of the observed SNPs, a reduction similar to estimates in a sample of African Americans. An Affymetrix genotyping array containing 250,000 SNPs has been designed based on these results; we demonstrate that it should have more than adequate coverage for genome-wide association mapping. The extent of LD is highly variable, and we find clear evidence of recombination hotspots, which seem to occur preferentially in intergenic regions. LD also reflects the action of selection, and it is more extensive between nonsynonymous polymorphisms than between synonymous polymorphisms.  相似文献   

4.
Linkage disequilibrium (LD), or the non-random association of alleles, is poorly understood in the human genome. Population genetic theory suggests that LD is determined by the age of the markers, population history, recombination rate, selection and genetic drift. Despite the uncertainties in determining the relative contributions of these factors, some groups have argued that LD is a simple function of distance between markers. Disease-gene mapping studies and a simulation study gave differing predictions on the degree of LD in isolated and general populations. In view of the discrepancies between theory and experimental observations, we constructed a high-density SNP map of the Xq25-Xq28 region and analysed the male genotypes and haplotypes across this region for LD in three populations. The populations included an outbred European sample (CEPH males) and isolated population samples from Finland and Sardinia. We found two extended regions of strong LD bracketed by regions with no evidence for LD in all three samples. Haplotype analysis showed a paucity of haplotypes in regions of strong LD. Our results suggest that, in this region of the X chromosome, LD is not a monotonic function of the distance between markers, but is more a property of the particular location in the human genome.  相似文献   

5.
The extent of linkage disequilibrium in Arabidopsis thaliana.   总被引:20,自引:0,他引:20  
Linkage disequilibrium (LD), the nonrandom occurrence of alleles in haplotypes, has long been of interest to population geneticists. Recently, the rapidly increasing availability of genomic polymorphism data has fueled interest in LD as a tool for fine-scale mapping, in particular for human disease loci. The chromosomal extent of LD is crucial in this context, because it determines how dense a map must be for associations to be detected and, conversely, limits how finely loci may be mapped. Arabidopsis thaliana is expected to harbor unusually extensive LD because of its high degree of selfing. Several polymorphism studies have found very strong LD within individual loci, but also evidence of some recombination. Here we investigate the pattern of LD on a genomic scale and show that in global samples, LD decays within approximately 1 cM, or 250 kb. We also show that LD in local populations may be much stronger than that of global populations, presumably as a result of founder events. The combination of a relatively high level of polymorphism and extensive haplotype structure bodes well for developing a genome-wide LD map in A. thaliana.  相似文献   

6.
7.
The study of complex genetic traits in humans is limited by the expense and difficulty of ascertaining populations of sufficient sample size to detect subtle genetic contributions to disease. Here we introduce an application of a somatic cell hybrid construction strategy called conversion that maximizes the genotypic information from each sampled individual. The approach permits direct observation of individual haplotypes, thereby eliminating the need for collecting and genotyping DNA from family members for haplotype-based analyses. We describe experimental data that validate the use of conversion as a whole-genome haplotyping tool and evaluate the theoretical efficiency of using conversion-derived haplotypes instead of conventional genotypes in the context of haplotype-frequency estimation. We show that, particularly when phenotyping is expensive, conversion-based haplotyping can be more efficient and cost-effective than standard genotyping.  相似文献   

8.
Using a novel single-molecule PCR approach to quantify the total burden of mitochondrial DNA (mtDNA) molecules with deletions, we show that a high proportion of individual pigmented neurons in the aged human substantia nigra contain very high levels of mtDNA deletions. Molecules with deletions are largely clonal within each neuron; that is, they originate from a single deleted mtDNA molecule that has expanded clonally. The fraction of mtDNA deletions is significantly higher in cytochrome c oxidase (COX)-deficient neurons than in COX-positive neurons, suggesting that mtDNA deletions may be directly responsible for impaired cellular respiration.  相似文献   

9.
Crossover between the human sex chromosomes during male meiosis is restricted to the terminal pseudoautosomal pairing regions. An obligatory exchange occurs in PAR1, an Xp/Yp pseudoautosomal region of 2.6 Mb, which creates a male-specific recombination 'hot domain' with a recombination rate that is about 20 times higher than the genome average. Low-resolution analysis of PAR1 suggests that crossovers are distributed fairly randomly. By contrast, linkage disequilibrium (LD) and sperm crossover analyses indicate that crossovers in autosomal regions tend to cluster into 'hot spots' of 1-2 kb that lie between islands of disequilibrium of tens to hundreds of kilobases. To determine whether at high resolution this autosomal pattern also applies to PAR1, we have examined linkage disequilibrium over an interval of 43 kb around the gene SHOX. Here we show that in northern European populations, disequilibrium decays rapidly with physical distance, which is consistent with this interval of PAR1 being recombinationally active in male meiosis. Analysis of a subregion of 9.9 kb in sperm shows, however, that crossovers are not distributed randomly, but instead cluster into an intense recombination hot spot that is very similar in morphology to autosomal hot spots. Thus, PAR1 crossover activity may be influenced by male-specific hot spots that are highly suitable for characterization by sperm DNA analysis.  相似文献   

10.
The genome-wide distribution of linkage disequilibrium (LD) determines the strategy for selecting markers for association studies, but it varies between populations. We assayed LD in large samples (200 individuals) from each of 11 well-described population isolates and an outbred European-derived sample, using SNP markers spaced across chromosome 22. Most isolates show substantially higher levels of LD than the outbred sample and many fewer regions of very low LD (termed 'holes'). Young isolates known to have had relatively few founders show particularly extensive LD with very few holes; these populations offer substantial advantages for genome-wide association mapping.  相似文献   

11.
We identified complex genomic rearrangements consisting of intermixed duplications and triplications of genomic segments at the MECP2 and PLP1 loci. These complex rearrangements were characterized by a triplicated segment embedded within a duplication in 11 unrelated subjects. Notably, only two breakpoint junctions were generated during each rearrangement formation. All the complex rearrangement products share a common genomic organization, duplication-inverted triplication-duplication (DUP-TRP/INV-DUP), in which the triplicated segment is inverted and located between directly oriented duplicated genomic segments. We provide evidence that the DUP-TRP/INV-DUP structures are mediated by inverted repeats that can be separated by >300 kb, a genomic architecture that apparently leads to susceptibility to such complex rearrangements. A similar inverted repeat-mediated mechanism may underlie structural variation in many other regions of the human genome. We propose a mechanism that involves both homology-driven events, via inverted repeats, and microhomologous or nonhomologous events.  相似文献   

12.
13.
More than 5 million single-nucleotide polymorphisms (SNPs) with minor-allele frequency greater than 10% are expected to exist in the human genome. Some of these SNPs may be associated with risk of developing common diseases. To assess the power of currently available SNPs to detect such associations, we resequenced 50 genes in two ethnic samples and measured patterns of linkage disequilibrium between the subset of SNPs reported in dbSNP and the complete set of common SNPs. Our results suggest that using all 2.7 million SNPs currently in the database would detect nearly 80% of all common SNPs in European populations but only 50% of those common in the African American population and that efficient selection of a minimal subset of SNPs for use in association studies requires measurement of allele frequency and linkage disequilibrium relationships for all SNPs in dbSNP.  相似文献   

14.
High-resolution haplotype structure in the human genome   总被引:41,自引:0,他引:41  
Linkage disequilibrium (LD) analysis is traditionally based on individual genetic markers and often yields an erratic, non-monotonic picture, because the power to detect allelic associations depends on specific properties of each marker, such as frequency and population history. Ideally, LD analysis should be based directly on the underlying haplotype structure of the human genome, but this structure has remained poorly understood. Here we report a high-resolution analysis of the haplotype structure across 500 kilobases on chromosome 5q31 using 103 single-nucleotide polymorphisms (SNPs) in a European-derived population. The results show a picture of discrete haplotype blocks (of tens to hundreds of kilobases), each with limited diversity punctuated by apparent sites of recombination. In addition, we develop an analytical model for LD mapping based on such haplotype blocks. If our observed structure is general (and published data suggest that it may be), it offers a coherent framework for creating a haplotype map of the human genome.  相似文献   

15.
16.
17.
Detection of large-scale variation in the human genome   总被引:26,自引:0,他引:26  
We identified 255 loci across the human genome that contain genomic imbalances among unrelated individuals. Twenty-four variants are present in > 10% of the individuals that we examined. Half of these regions overlap with genes, and many coincide with segmental duplications or gaps in the human genome assembly. This previously unappreciated heterogeneity may underlie certain human phenotypic variation and susceptibility to disease and argues for a more dynamic human genome structure.  相似文献   

18.
19.
Inversions, deletions and insertions are important mediators of disease and disease susceptibility. We systematically compared the human genome reference sequence with a second genome (represented by fosmid paired-end sequences) to detect intermediate-sized structural variants >8 kb in length. We identified 297 sites of structural variation: 139 insertions, 102 deletions and 56 inversion breakpoints. Using combined literature, sequence and experimental analyses, we validated 112 of the structural variants, including several that are of biomedical relevance. These data provide a fine-scale structural variation map of the human genome and the requisite sequence precision for subsequent genetic studies of human disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号