首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of orange-red emitting Sm3+ activated Ba0.85Ca0.15Ti0.90Zr0.10O3 (BCZT: xSm3+, x?=?0.001–0.007) are synthesized by a conventional solid-state reaction method. The Sm3+ ions composition dependent photoluminescence properties are systematically investigated. Under the excitation of a 407?nm near-ultraviolet light, the ceramics exhibit strong characteristic emission of Sm3+ ions with dominant orange-red emission peak at around 595?nm, which is ascribed to the transition of 4G5/26H7/2. The BCZT: 0.004Sm3+ ceramic displays the optimal emission among these Sm3+-doped BCZT solid solutions. Moreover, the photoluminescence intensity exhibits extremely sensitive to temperature, suggesting that BCZT: 0.004Sm3+ could be applicable for temperature sensing. A maximum relative sensitivity of 1.89%?K?1 at 453?K is obtained. Furthermore, the existence of ferroelectricity in the BCZT host combined with Sm3+ activated photoluminescence properties could be useful for developing optical-electro multifunctional materials and devices.  相似文献   

2.
Ba2SiO4:Sm3+ nanostructure phosphors have been synthesized by a simple sol-gel method. Phase evaluation, structural characteristics and photoluminescence properties of the synthesized Ba2SiO4:Sm3+ powders were studied using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG-DTA), Fourier transform infrared spectroscopy (FTIR), and photoluminescence spectroscopy (PL). X-ray diffraction results showed that all synthesized samples were single-phase barium silicate (Ba2SiO4) and samarium (Sm) ions were incorporated into the lattice of Ba2SiO4. Adding samarium to barium silicate changed the microstructure from vermicular to spherical structures. The Photoluminescence spectrum of Ba2SiO4:Sm3+ phosphors exhibited characteristic emission peaks at 562?nm which is due to the 4G5/2 →6H7/2 transition of samarium ions and corresponds to the orange region. The results showed that the barium silicate activated with 0.08?mol samarium exhibited the highest PL intensity.  相似文献   

3.
A novel single-phased white-light-emitting phosphor Sm3+ doped LiCa3MgV3O12 (LCMV) was developed. The LCMV host was one self-activated bluish-green emitting phosphor, which possessed an efficient excitation band in the 250–400?nm wavelength range and showed an intense broadband bluish-green emission with internal quantum efficiency (IQE) of 39%. Doping Sm3+ ions in to LCMV host induced tunable-color emissions, due to the energy transfer from [VO4]3? to Sm3+ ions. Importantly, under 340?nm excitation, the LCMV:Sm3+ can emitted bright white light by combining the self-activated luminescence of LCMV host and the red emissions of Sm3+ ions, and the IQE of the white-emitting composition-optimized LCMV:0.01Sm3+ phosphors reached up to 45%. These white-emitting LCMV:Sm3+ phosphors have potential applications in white light-emitting diodes and optical display devices.  相似文献   

4.
High-efficient Ce3+/Tb3+ co-doped Ba3Y2B6O15 phosphors with multi color-emitting were firstly prepared, and their structural and luminescent properties were studied by XRD Rietveld refinement, emission/excitation spectra, fluorescence lifetimes as well as temperature-variable emission spectra. Upon 365?nm excitation, the characteristic blue Ce3+ band along with green Tb3+ peaks were simultaneously found in the emission spectra. Moreover, by increasing concentration of Tb3+, a blue-to-green tunable emitting color could be realized by effective Ce3+→Tb3+ energy transfer. Furthermore, all Ba3Y2B6O15: Ce3+, Tb3+ phosphors exhibit high internal quantum efficiency of ~?90%, while the temperature-variable emission spectra reveal that the phosphors possess impressive color stability as well as good thermal stability (T50 =?~?120?°C). The results indicate that these efficient color-tuning Ba3Y2B6O15: Ce3+, Tb3+ might be candidate as converted phosphor for UV-excited light-emitting diodes.  相似文献   

5.
We synthesized a batch of co-doped (Ce3++Sm3+): LBZ glass specimens by melt quenching process and their structural and radiation properties were studied by employing XRD, FE-SEM, optical absorption, photoluminescence and lifetime measurements. UV–Vis–NIR absorption studies of the co-doped (Ce3++Sm3+): LBZ glassy matrix displays pertinent bands of both Ce3+ and Sm3+ ions. Individually doped Sm3+: LBZ glass exhibit bright orange emission at 603?nm (4G5/26H7/2) under the excitation of 403?nm. Nevertheless, the luminescence intensities pertaining to Sm3+ were extraordinarily increased by co-doping with Ce3+ ions to Sm3+: LBZ glassy matrices because of energy transfer from Ce3+ to Sm3+. The fluorescence spectra of co-doped (Ce3++Sm3+): LBZ exhibits characteristic emission bands of Ce3+ (441?nm, blue) and Sm3+ (603?nm, reddish orange) under the excitation of 362?nm. Decay curves of Ce3+ and Sm3+ ions in co-doped glass has been fitted to double exponential nature. The decreasing lifetime of donor ion and rising lifetime of acceptor ion in double doped glass could support the energy transfer from Ce3+ to Sm3+ ions in the host matrix. The CIE coordinates and CCT values were calculated for all the obtained co-doped glassy samples from their luminescence spectra. By adding Ce3+ ions to individually doped Sm3+: LBZ glass matrix, the emitting color changes from reddish orange to white light which resembles the energy transfer from Ce3+ to Sm3+ ions. These studies, perhaps implied that attained co-doped (Ce3++Sm3+): LBZ glassy samples are potential materials for white lighting appliances.  相似文献   

6.
Orange-red light-emitting Sm3+-doped cerium oxide (CeO2) ceramic powder with various concentrations of Sm3+ ions was prepared through a sol-gel process. X-ray diffraction and Rietveld analysis confirmed the formation of a purely cubic structure with a space group of Fm3?m. The lattice parameters and unit cell volumes of the CeO2:Sm3+ powder increased with the concentration of Sm3+ ions. The energy-dispersive X-ray spectra and corresponding mapping images confirmed the elemental composition and adequate dispersion of all elements in the CeO2:Sm3+ powder. A broad excitation band at approximately 365?nm was observed in the excitation spectra of CeO2:Sm3+ phosphors owing to the charge transfer transition from O 2p to Ce 4f orbitals. The Sm3+ doped CeO2 phosphors emitted sharp luminescence with a main peak at 615?nm under excitation at 360?nm. The spectral analysis revealed that the CeO2:Sm3+ phosphors exhibited strong orange-red emission. Concentration quenching was observed in the CeO2:Sm3+ phosphors with 0.5?mol% of critical concentration of Sm3+ ions due to dipole dipole interaction of two nearest Sm3+ ions. The quantum efficiency was observed as high as 58%. The thermal stability of the present materials was estimated with the evaluation of activation energy as 0.31?eV. The broad excitation band and sharp orange–red emission indicated the potential use of CeO2:Sm3+ phosphors for white light-emitting diodes.  相似文献   

7.
In this work, the conventional solid-state method was applied to synthesize a series of red-emitting NaLaMgWO6:Sm3+ phosphors. The crystal structure, phase purity, morphology, particle size distribution as well as elemental composition of the as-prepared phosphors were investigated carefully with the aid of XRD, SEM, EDS, FT-IR analyses, indicating the high-purity and micron-sized NaLaMgWO6:Sm3+ phosphors with monoclinic structure were prepared successfully. The spectroscopic properties of Sm3+ in NaLaMgWO6 host including UV–vis diffuse reflection spectrum, photoluminescence excitation and emission spectra, decay curves, chromaticity coordinates and internal quantum efficiency were investigated in detail. Upon excitation with UV (290 nm) and n-UV (406 nm), NaLaMgWO6:Sm3+ phosphor presented red emission corresponding to the 4G5/26HJ (J = 5/2, 7/2, 9/2, and 11/2) transitions of Sm3+, in which the hypersensitive electronic dipole transition 4G5/26H9/2 (645 nm) was with the strongest emission intensity because Sm3+ ions were located at a lattice site with anti-inversion symmetry. The optimal concentration of Sm3+ was different for the given excitation wavelength such as 290 nm and 406 nm, which was interpreted by the extra effect of the energy transfer from W6+-O2- group to Sm3+. The decay lifetime for 4G5/26H9/2 transition of Sm3+ was very short (< 1 ms) and decreased with the increasing Sm3+ concentration. The present investigation indicates that NaLaMgWO6:Sm3+ phosphor could be a potential red component for application in w-LEDs.  相似文献   

8.
Different concentrations of trivalent samarium (Sm3+) ions doped cadmium sulphide (CdS) nanoparticles were fabricated by one-step solid-state method at low temperature using C10H6(SO3Na)2 as surfactant for optoelectronic and solar cell applications. They were characterized through powder X-ray diffraction, Fourier transform infrared, Raman, scanning electron microscopy, transmission electron microscopy, UV–Vis absorption and photoluminescence studies. These nanoparticles establish cubic structure without any foreign phase and it was confirmed by Raman studies. The Raman spectrum of CdS nanoparticles shows first three longitudinal optical phonon orders. The adjacent lattice fringes were spaced about 0.30 nm. The direct band gap energy was found slightly higher than the bulk crystallites. The photoluminescence spectra of CdS: Sm3+ exhibits a broad peak at 563 nm with a shoulder at around 607 nm corresponding to Sm3+: 4G5/2 → 6H7/2 transition at 402 nm excitation. A luminescence quenching was noticed at higher Sm3+ ions concentration due to transfer of energy among the excited Sm3+ ions. The CdS: Sm3+ particles were fabricated with a size of the order of nanoscale and they can be used for efficient energy conversion. The studied CdS: Sm3+ nanoparticles are suitable for optoelectronic and solar cell applications.  相似文献   

9.
Herein, a novel Bi3+-activated Ca3Y2Ge3O12 (CYGO) narrow-band cyan-emitting phosphor was synthesized. It can be excited from 320–420 nm, and the strongest excitation peak is located at 370 nm, which is suitable for current near-ultraviolet (NUV) chips perfectly. The full width at half maximum is at 52 nm. By analyzing the crystal structure of the sample, we infer that the Bi3+ ions replace the Y3+ site to form a highly symmetrical BiO6 octahedron. The time-resolved photoluminescence (TRPL) spectra of CYGO: Bi3+ reveal that the only a single emission center exists in the host lattice. A warm white light–emitting diode (WLED) device with a low correlated color temperature (3148 K) and a high color rendering index (90.2) was fabricated by using the as-prepared sample, and the significant thermal stability of CYGO: Bi3+ guarantees its potential application in WLEDs. It is verified that the structure with only one crystallographic Y site for Bi3+ dopant occupation and highly symmetrical and dense structure is conducive to realize narrow-band emission, which will provide experience for researchers to explore more Bi3+-activated phosphors used for high-end lighting.  相似文献   

10.
《Ceramics International》2017,43(18):16467-16473
The trivalent Sm3+ ion doped tellurium-antimony-tungsten oxides based glasses were prepared by conventional melt quenching and pressing method. Spectroscopic characterizations such as optical absorption, photoluminescence and decay profile measurements were performed on the glasses. Judd-Ofelt theory is used to evaluate the oscillator strengths and the three phenomenological intensity parameters (Ωλ, λ = 2, 4, 6) of the glasses. The photoluminescence spectra recorded under 479 nm excitation exhibited the emission bands at 562, 598, 645 and 708 nm corresponding to the transitions 4G5/26HJ (J = 5/2, 7/2, 9/2, 11/2) respectively. Using J-O parameters (Ωλ) various important radiative parameters viz., transition probabilities, emission cross-sections, branching ratios of various emission bands were evaluated. Decay profiles were recorded to find the lifetime of the 4G5/2 excited level and the obtained life time values are observed to decrease with an increase of Sm3+ ion concentration; such decrease is attributed due to clustering of Sm3+ ions which may cause luminescence quenching.  相似文献   

11.
Hafnium oxide nanoparticles doped with trivalent samarium (HfO2:Sm3+) were synthesized by hydrothermal route from chloride reagents. Different samarium doping concentrations (0, 0.5, 1, 3, 5 and 10?at% with respect to Hf) and different post-annealing temperatures (200, 400, 600, 800 and 1000?°C) were evaluated. The resulting nanoparticles showed an oval morphology with average sizes below 30?nm. A sensitive relationship between the samarium concentration and the resulting crystal structure of the material was observed by X-Ray diffraction and further evidenced by the cathodoluminescence and photoluminescence spectra. Low concentrations of samarium (0, 0.5 and 1?at%) generated a monoclinic phase, whereas higher concentrations of samarium (5 and 10?at%) generated a metastable cubic phase. The average crystallite sizes calculated by the Scherrer's equation were close to 8?nm and 12?nm for cubic and monoclinic phases, respectively. The luminescent emission corresponded to the characteristic 4f-4f transitions of the samarium ion with a principal peak centered at 610?nm. The best luminescent properties were obtained with the sample doped with samarium at 0.5?at%, annealed at 600?°C.  相似文献   

12.
《Ceramics International》2016,42(12):13648-13653
A series of Li3Ba2Y3−x(WO4)8:xEu3+ (x=0.1, 1, 1.5, 2 and 2.8) phosphors were synthesized by a high temperature solid-state reaction method. Under the excitation of near ultraviolet (NUV) light, the as-prepared phosphor exhibits intense red luminescence originating from the characteristic transitions of Eu3+ ions, which is 1.8 times as strong as the commercial Y2O2S:Eu3+ phosphor. The optimal doping concentration of Eu3+ ions here is confirmed as x=1.5. The electric dipole-quadrupole (D-Q) interaction is deduced to be responsible for concentration quenching of Eu3+ ions in the Li3Ba2Y3(WO4)8 phosphor. The analysis of optical transition and Huang-Rhys factor reveals a weak electron-phonon coupling interaction. The temperature-dependent emission spectra also indicate that the as-prepared Li3Ba2Y3(WO4)8:Eu3+ phosphor has better thermal stability than that of the commercial Y2O2S:Eu3+ phosphor. Therefore, our results show that the as-prepared Li3Ba2Y3(WO4)8:Eu3+ phosphor is a promising candidate as red emitting component for white light emitting diodes (LEDs).  相似文献   

13.
《Ceramics International》2021,47(18):25602-25613
An energy efficient solution combustion technique was selected for fabricating a series of energy-efficient novel down-converted Ba3Y4O9:Er3+ nanoparticles with green emission. Crystal structure engineering along with the morphological aspects was investigated via certain advanced characterizations such as Rietveld refinement and powder X-ray diffractometry (PXRD) procedure, microscopic practices like scanning and transmission electron microscope techniques, photoluminescence and diffuse reflectance spectroscopic analysis. Average crystallite size (65.71 nm–74.15 nm) and micro strain (0.0012) of the optimum powder nanomaterial were analyzed from high quality XRD data using Williamson-Hall (W–H) plot method. Alluring spectroscopic features were realized by photoluminescent (PL) spectra recorded upon excitation via near ultraviolet (NUV) source of 381 nm; displaying an intense emission peak (562 nm) situated in the visible region that is solely responsible for the green glow of the prepared phosphor. PL analysis witnessed a bright green emission via a reliable emanation transition (4S3/2 → 4I15/2) of Er3+ ions. Excellent colorimetric parameters of optimized nanophosphor like CIE coordinates (0.3420, 0.6064), 5356K CCT and 79.02% color purity validated its advanced photonic and optoelectronic applications for cool light emitting WLEDs, lasers, optical sensors, solar and photovoltaic cells.  相似文献   

14.
Novel double-perovskite K(Y0.95-xLuxEu0.05)CaWO6 red phosphors were successfully prepared by the controllable citrate-EDTA complexing method. XRD with structure refinement, FTIR, Raman and photoluminescence spectra were combined to systematically investigate the structure parameters and luminescence properties of prepared phosphors. The substitution of Lu3+ with smaller ionic radius resulted in the lower symmetry even with the same space group of C2/m, which was also directly observed from the red shift and splitting of Raman T2?g(1) mode. The concentration higher than x?=?0.6 made the intensity alteration in the excitation spectra from charge transfer band to 4f?4f of Eu3+. The obvious enhancements of red emission at 615?nm were obtained under both blue and ultraviolet lights, respectively, and reached almost the same intensity at x?=?0.6. Meanwhile, the more standard red light could be found by the gradual shifts of CIE chromaticity coordinates and bigger ratio of red/orange emission. The substitution of Lu3+ improved the quality and emission intensity of red light of this double perovskite system and the composition optimized phosphor of K(Y0.35Lu0.6Eu0.05)CaWO6 exhibited great potential in the application of white LEDs.  相似文献   

15.
Novel Y2Si4N6C:Sm3+ phosphors for white light-emitting diodes (w-LEDs) were prepared by a carbothermal reduction and nitridation method. X-ray diffraction (XRD) and photoluminescence spectra were utilized to characterize the structure and luminescence properties of the as-synthesized phosphors. The emission spectrum obtained by excitation into 291 nm contains exclusively the characteristic emission of Sm3+ at 568, 607 and 654 nm which correspond to the transitions from 4G5/2 to 6H5/2, 6H7/2, and 6H9/2 of Sm3+, respectively. The strongest one is located at 607 nm due to 4G5/26H7/2 transition of Sm3+. It was found that concentration quenching occurred as a result of dipole–dipole interaction according to Dexter's theory. The temperature dependence of photoluminescence properties was investigated from 25 to 300 °C and the prepared Y2Si4N6C:Sm3+ phosphors showed superior thermal quenching properties.  相似文献   

16.
In this paper, Ca6BaP4O17:Sm3+ and Li+ co-doped Ca6BaP4O17:Sm3+ phosphors were synthesized in air and argon atmospheres using a solid-state reaction method. The phosphor morphologies and crystal structure were studied using scanning electron microscopy and X-ray diffraction, respectively. The emission and absorption characteristics were investigated using photoluminescence emission spectroscopy and diffuse reflectance spectroscopy. The surface states and composition of phosphor were investigated using X-ray photoelectron spectroscopy. The emission integrated intensities of the phosphors sintered in an argon atmosphere increased 3.5 fold than the ones sintered in air atmosphere, with Li+ ions becoming embedded in the lattice of the Ca6BaP4O17:Sm3+ phosphor. This occurs because there are fewer defect/oxygen vacancies and less of the secondary phase forms, leading to better Sm3+ emission. The results suggest that sintering a mixture of the raw materials of a phosphor in an argon atmosphere is a good approach for synthesizing Ca6BaP4O17:Sm3+ phosphor powders. The color purity and CIE values of an optimized phosphor sample sintered in an argon atmosphere with an Li+ ion compensator were calculated to be ~ 99.6% and (0.612,0.386) in the orange–red region under 405-nm excitation, respectively. Moreover, the solid solubility of Sm3+ ions in the Ca6BaP4O17 host can be enhanced by using an argon atmosphere in the synthesis process.  相似文献   

17.
《Ceramics International》2021,47(20):28942-28950
To improve the luminescence property of Sm3+ in Y2Mo3O12, partial Ca2+-F- co-substituted Y2Mo3O12:Sm3+ phosphor, namely Y2-xCaxMo3O12-xFx:Sm3+, was prepared using a solid-state method. The effect of introducing Ca2+-F- ion pairs on structure and luminescence properties of Y2Mo3O12:Sm3+ was studied in depth. XRD patterns not only manifested that all as-prepared Y2-xCaxMo3O12-xFx:Sm3+ samples had standard Y2Mo3O12 structure, but also indicated the introduction of Ca2+-F- ion pairs did not cause the change of crystal structure. Under the near ultraviolet excitation of 404 nm, the emission peaks of Y2Mo3O12:Sm3+ were located at 567 nm, 605 nm and 652 nm, respectively, resulting from the 4f→4f electron transitions of Sm3+ ions. Furthermore, the luminescence intensity of Sm3+ was obviously enhanced through the co-substitution of Y3+-O2- ions with Ca2+-F- ions in Y2Mo3O12 structure, and the chromaticity coordinates moved towards red region, which due to the environmental effect of crystal field around Sm3+. Besides, the red LED device was manufactured for suitable chromaticity parameters. All results indicated that the as-prepared Y1.84Ca0.06Mo3O11.94F0.06:0.10Sm3+ red-emitting phosphor could become a promising candidate for application of white light-emitting diodes and plant illumination.  相似文献   

18.
Energy conservation and environmental safety are the key requirements in the modern world. We report novel orange-emitting double perovskite Ba2LaNbO6:Eu3+ (BLN:Eu3+) nanophosphor fabricated using a citrate sol-gel method for use in general illumination and photocatalysis. After annealing at 800?℃, the particles exhibited a nanorod-like morphology with monoclinic structure. The photoluminescence emission spectra exhibited an intense 5D07F1 transition at 594?nm and a moderate 5D07F2 transition at 615?nm, demonstrating that the Eu3+ ions occupied the La3+ sites with inversion symmetry. The optimal concentration of Eu3+ ions was found to be about 5?mol% for the BLN host lattice. Energy transfer from the NbO67- octahedrons to the Eu3+ ions was clearly witnessed when the BLN:Eu3+ nanophosphors were excited with both the characteristic excitation bands of Eu3+ (7F05L6) and NbO67- octahedrons at 392 and 380?nm, respectively. The thermal quenching temperature of 5?mol% Eu3+ ions doped BLN nanophosphors was found to be 183?℃, indicating that these nanophosphors are very stable at high temperatures. In addition, the dye removal efficiency of the proposed BLN nanophosphors was verified using Rhodamine B (RhB) dye as a model pollutant under UV irradiation. Compared to a commercial nano-ZnO catalyst, our synthesized BLN nanophosphors showed superior RhB de-colorization efficiency. Therefore, the proposed BLN:Eu3+ nanophosphors are promising multifunctional materials for photocatalysis and general lighting applications.  相似文献   

19.
A series of novel red emitting phosphors Li6M(La1−xEux)2Nb2O12 (M=Ca, Sr, Ba; 0≤x≤0.3) were synthesized by solid state reaction, and their structures and photoluminescence properties were investigated in detail. The excitation spectrum of Li6M(La1−xEux)2Nb2O12 revealed two mainly excitation bands at 393 nm and 464 nm, which match well with the two popular emissions from near-UV and blue LED chips. Upon the 464 nm light excitation, Li6MLa2Nb2O12:Eu3+ phosphors exhibit a red emission centered at 608 nm, originated from the 5D07F2 transition of Eu3+ ions. The Eu3+ surrounding crystal lattice environment in the garnet-based host was changed by altering the c sites element with different radii alkaline earth Ba, Sr, and Ca. The evident photoluminescence enhancement was observed in Li6M(La1−xEux)2Nb2O12 phosphors with the decreasing of the c sites ionic radius. The emission intensity of the optimized Li6Ca(La0.8Eu0.2)2Nb2O12 (λexc=464 nm) phosphor is about two times higher than that of Y2O3:Eu3+ (λexc=467 nm) under blue light excitation. In addition, the quenching mechanism and the relationship between the structure and photoluminescence property were also discussed.  相似文献   

20.
In this study, Sm3+ doped Na0.5La0.5Bi8-xSmxTi7O27 (NBT-BITL-xSm, x = 0, 0.01, 0.015, 0.02, and 0.03) ceramics were synthesized via a conventional solid-state reaction process. The structural, electrical, and photoluminescence properties of NBT-BITL-xSm ceramics were systematically investigated. The crystal structure of NBT-BITL-xSm was refined using XRD Rietveld refinement and found to possess a single orthorhombic structure at room temperature. Raman spectroscopy revealed that Sm3+ ions preferred to substitute for Bi3+ located in the A-sites of pseudo-perovskite layers, inducing a slight decrease in orthorhombic distortion. Strong characteristic emission peaks of Sm3+ ions were observed in orange-red regions under a 407 nm laser source, and the sample with x = 0.015 achieved the optimal photoluminescent property. Dielectric measurements showed double anomaly permittivity peaks at the temperature of 589 and 600°C (Tm and Tc, respectively). The complex impedance spectrum indicated that the electrical conductivities mainly originated from crystal grains at high temperature. The activation energy was calculated to be 1.37–1.44 eV from Arrhenius fitting results. After Sm3+ substitution, the activation energy for conductivity was increased as a result of reduced oxygen vacancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号