首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solid solutions of the GdFeO3–GdInO3 system were prepared at 1550 °C by ceramic powder processing. The formulated composition was Gd(Fe1−xInx)O3 (GFI) with the indium contents at x = 0, 0.25, 0.5, 0.75, and 1.0. A stable phase of Gd(Fe1/3In2/3)O3 in our system was identified by X-ray diffraction and phase composition analysis. Multi-phase morphologies were observed for GFI bulks with x = 0.5 and 0.75. Dielectric and electrical properties of the GFI bulks were investigated. The addition of 25% In3+ in GdFeO3 had an obvious enhancement in polarization and led to an elevated resonance frequency. Dielectric properties of GFI bulks except GdInO3 were strongly dependent upon the test frequency, which corresponded to the response of polarization mechanism. GdInO3 displayed as a stable dielectric, which was frequency- and temperature-insensitive. GdInO3 was thermally activated and became leaky until above 600 °C.  相似文献   

2.
YTaO4:Eu3+ powders were synthesized by a flux method with LiCl. The use of a flux in the synthesis of M′–YTaO4 facilitated the reaction of raw materials, leading to lowering the heating temperature, but not effective at the high firing temperature. The red emission peaks were observed around 613 nm with an excitation wavelength of 254 nm. Emission peaks were composed of two sets around 613 nm and 590 nm, which originated from 5D07F2 and 5D07F1, respectively. PL intensity of YTaO4:Eu3+ prepared with a small amount of LiCl (10 wt%) significantly depended on the firing temperatures, while that with a larger amount of LiCl (40 wt%) slightly relied on firing temperatures. The highest PL intensity could be obtained at the firing conditions of 1300 °C and 10 wt% LiCl.  相似文献   

3.
通过研磨、超声的方法制备了MgB2超细粉体,并用CuBr2对该MgB2粉体进行表面修饰。研究发现,经过CuBr2修饰的MgB2,其超导转变温度Tc高于未修饰的MgB2粉体。可能原因是Cu2+与B-离子配位后,增强了MgB2的电声耦合强度,并提高了MgB2的空穴载流子浓度。  相似文献   

4.
Highly porous palladium bulks with open porosities from 77.8% to 82.0% are prepared by powder metallurgical process with Na2CO3 as the filler material. Compressive properties of the prepared porous Pd bulks have been investigated at strain rates of 10−3–10−1 s−1. It has been found that the porous Pd bulks first show a short elastic region, then a long and oblique stress yield region, and finally, a densification region where the stress increase rapidly in the nominal stress–nominal strain curves. The effect of strain rate on the compressive properties of the porous Pd bulks is also discussed.  相似文献   

5.
On the basis of our studies it results that dielectric properties of BaBi2Nb2O9 ceramics are sensitive to axial pressure applied. The pressure causes an increase of dispersion in the real part of dielectric permittivity ?′(T,f) and a rise in the temperature Tm at which the maximum in ?′(T,f) dependence occurs. The applied pressure induces in the ?′(T) dependence an additional step-like anomaly, which appears at the temperature TA < Tm. The applied pressure shifts both Tm and TA at the same rate, i.e. dTA/dX = dTm/dX = +14 °C/kbar at high axial pressure range, above the threshold pressure Xthresh. The Vogel–Fulcher relationship is employed to determine the axial pressure influence on relaxor properties of BBN ceramics. The simulated order parameter q takes non-zero values below Burn‘s temperature TB, where the polar clusters appear on cooling. For pressures higher than 0.8 kbar, the TB changes at the rate dTB/dX = −200 °C/kbar. The decrease in the difference between Burn's TB and the freezing Tf temperatures induced by the applied axial pressure is observed. This could be ascribed to the narrowing of temperature range of relaxor behavior.  相似文献   

6.
The ferroelectric properties of bismuth pyrostannate Bi2(Sn0.85Cr0.15)2O7 in the high-temperature region are established. The linear thermal expansion coefficient, electrical resistance, impedance, I?V characteristics, capacitance, loss-angle tangent, charge, and thermopower of the investigated material are measured in the temperature range of 300?700 K at frequencies of 102?106 Hz. Anomalies of the thermal expansion coefficient and hodograph spectrum variation in the region of polymorphic phase transitions are observed. The high resistance and change of the hopping conductivity for the tunnel-emission are found. The hysteresis in the electric field dependence of polarization is established. The change in the thermopower sign with temperature is revealed. The obtained experimental data are explained in the framework of the model of migration polarization by charged chromium ions.  相似文献   

7.
The monodisperse CoFe2O4 nanoparticles were synthesized by a modified chemical coprecipitation method. Coating SiO2 on the surface of the CoFe2O4 nanoparticles was carried out to keep single domain particles non-interacting with cubic magnetocrystalline anisotropy. The Curie temperatures (Tc) of the monodisperse CoFe2O4 nanoparticles can be accurately measured because the SiO2 shells prevented the aggregation and growth of nanoparticles at high temperature. The magnetic properties of the CoFe2O4@SiO2 nanoparticles with core-shell structure in a wide temperature range (300~950?K) were investigated. It is remarkable that the coercive field (Hc) of CoFe2O4 nanoparticles increased from about 760?Oe to 1806?Oe after being coated with SiO2, which increased by 137.6% compared to the uncoated samples at 300?K. The saturation magnetization (Ms) of the CoFe2O4@SiO2 nanoparticles is 34.59?emu/g, which is about 52% of the naked CoFe2O4 nanoparticles value (66.51?emu/g) at 300?K. The hysteresis loops of the CoFe2O4@SiO2 nanoparticles showed an orderly magnetic behavior at high temperature, such as the Ms, remanence magnetization (Mr) and Hc decreased as temperature increasing, being equal to zero near Tc. This is a good indication that the CoFe2O4@SiO2 nanoparticles are suitable for a wide variety of technological applications at high temperature.  相似文献   

8.
Recently, the rapid development of advanced communication systems increasingly strongly demands high-performance microwave dielectric ceramics in microwave circuits. Among them, Li2ZnTi3O8 ceramics have been one of the most widely investigated species, due to its high quality factor, moderate firing conditions and low cost. However, the dielectric constants of the already reported Li2ZnTi3O8 ceramics are fixed in a narrow range, limiting their wider applications. To adjust the dielectric constant of the Li2ZnTi3O8 based ceramics, in this work Li2ZnTi3O8 ceramics added with different amounts of Al2O3 (0–8?wt%) were prepared by conventional solid-state reaction. The microstructure and microwave dielectric properties of the samples were investigated. Due to the addition of Al2O3, the sintering temperature of the ceramics would be increased somewhat. Some Al3+ ions could substitute for Ti4+ ions in Li2ZnTi3O8, and the added Al2O3 would react with ZnO to produce a ZnAl2O4 phase accompanying with the formation of TiO2 phase, which would inhibit the growth of Li2ZnTi3O8 grains. The dielectric constant of the finally obtained ceramics would be reduced from 26.2 to 17.9, although the quality factors of the obtained ceramics would decrease somewhat and the temperature coefficient of resonant frequency would deviate further from zero.  相似文献   

9.
Al2O3–30 wt.%TiCN composites have been fabricated successfully by a two-stage gas pressure sintering schedule. The gas pressure sintered Al2O3–30 wt.%TiCN composite achieved a relative density of 99.5%, a bending strength of 772 MPa, a hardness of 19.6 GPa, and a fracture toughness of 5.82 MPa m1/2. The fabrication procedure involves solid state sintering of two phases without solubility to prepare Al2O3–TiCN composite. Little grain growth occurred for TiCN during sintering while Al2O3 grains grew about three times to an average size of 3–5 μm. The interface microstress arising during cooling from the processing temperature because of the thermal and/or mechanical properties mismatch between the Al2O3 and TiCN phase is about 50 MPa. Such a compressive microstress is not high enough to cause grain boundary cracking that may weaken the composite but it can introduce dislocations within grains, which is very good to enhance the composite properties.  相似文献   

10.
Ca0.28Ba0.72Nb2O6 (CBN28) ceramics with addition of CeO2 and La2O3, were prepared by the conventional ceramic fabrication technique. XRD results showed that the single tungsten bronze structure of CBN28 was not changed by adding CeO2 or La2O3. SEM results indicated that both CeO2 and La2O3 dopants were effective in inhibiting the grain growth and suppressing the anisotropic growth behavior in tungsten bronze structure. It was also found that both two kinds of dopants had remarkable effects on the dielectric and ferroelectric properties of CBN28 ceramics. Compared with CBN28 ceramics, the dielectric constant around room temperature εr, dielectric loss tan δ, the degree of diffuseness γ and coercive field Ec were all ameliorated when doping proper amount of CeO2 or La2O3. The comprehensive electric performance was obtained in CBN28–0.3 wt% CeO2 and CBN28–0.4 wt% La2O3 ceramics. Besides, the underlying mechanism for variations of the electrical properties due to different dopants was explained in this work.  相似文献   

11.
Five kinds of rare earth stabilized bismuth oxide ceramics, (Bi2O3)0.75(RE2O3)0.25 (RE=Dy, Y, Ho, Er and Yb), were synthesized by sintering a mixture of Bi2O3 and RE2O3 at 900–1100 °C and their electrical properties were investigated. The bulk density and the lattice constant linearly increased with an increase in the atomic weight of RE and the ionic radius of RE3+, respectively. The electrical conductivity at 300 °C slightly increased with the increasing ionic radius of RE3+, while at 500 and 700 °C, it was constant regardless of the ionic radius of RE3+. The migration activation energy and the association activation energy showed a maximum value and a minimum value at RE=Er, respectively.  相似文献   

12.
yPb(In1/2Nb1/2)O3-(1 − x − y)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (yPIN-(1 − x − y)PMN-xPT) polycrystalline ceramics with morphotropic phase boundary (MPB) compositions were synthesized using columbite precursor method. X-ray diffraction results indicated that the MPB of PIN-PMN-PT was located around PT = 0.33-0.36, confirmed by their respective dielectric, piezoelectric and electromechanical properties. The optimum properties were found for the MPB composition 0.36PIN-0.30PMN-0.34PT, with dielectric permittivity ?r of 2970, piezoelectric coefficient d33 of 450 pC/N, planar electromechanical coupling kp of 49%, remanent polarization Pr of 31.6 μC/cm2 and TC of 245 °C. According to the results of dielectric and pyroelectric measurements, the Curie temperature TC and rhombohedral to tetragonal phase transition temperature TR-T were obtained, and the “flat” MPB for PIN-PMN-PT was achieved, indicating that the strongly curved MPB in PMN-PT system was improved by adding PIN component, offering the possibility to grow single crystals with high electromechanical properties and expanded temperature usage range (limited by TR-T).  相似文献   

13.
14.
15.
We fabricated xBaTiO3 (BT)/(1-x)[BaTiO3-Bi(Mg1/2Ti1/2)O3-BiFeO3] (BT-BMT-BF)?+?0.1?wt%MnCO3 composites by spark plasma sintering and investigated the effect of BT content x, BT powder size, and BT-BMT-BF composition on piezoelectric properties. For xBT/(1-x)(0.3BT-0.1BMT-0.6BF) +?0.1?wt%MnCO3 (x?=?0–0.75) composites with a 0.5-µm BT powder, the dielectric constant was increased with x, and the relative density was decreased at x?=?0.67 and 0.75, creating optimum BT content of x?=?0.50 with a piezoelectric constant d33 of 107?pC/N. When a larger 1.5-µm BT powder was utilized for the composite with x?=?0.50, the d33 value increased to 150?pC/N due to the grain size effect of the BT grains. To compensate for a compositional change from the optimum 0.3BT-0.1BMT-0.6BF due to partial diffusion between the BT and 0.3BT-0.1BMT-0.6BF grains, a 0.5BT/0.5(0.275BT-0.1BMT-0.625BF)?+?0.1?wt%MnCO3 composite with the 1.5-µm BT powder was fabricated. We obtained an increased d33 value of 166?pC/N. These results provided a useful composite design to enhance the piezoelectric properties.  相似文献   

16.
Photostructurable Li2O-Al2O3-SiO2 glass is a promising material to fabricate complex three-dimensional structure with a high aspect ratio. However, its high dielectric loss at high frequencies has restrained its application in the field of integrated circuits packaging. In this research, La2O3, which has a large ionic radius, as well as strong polarization and bonding strength, was used to obstruct mobile ion migration to reduce the dielectric loss. The results indicated that moderate doping with La2O3 could effectively reduce the dielectric loss. When the dopant amount was 3%, the dielectric loss was successfully reduced to a minimum of 4?×?10?3 with a dielectric constant of 6.6 at 1?GHz, and this sample also possessed the optimal dielectric-temperature stability. Additionally, the effects of doping on the photosensitivity and crystallization behavior were also analysed. The results suggested that La2O3 doping did not affect the photosensitivity and selective crystallization characteristics. However, La2O3 restrained the precipitation of silicate from the [SiO4] tetrahedron, resulting in a decrease of nucleation rate and a delay of crystallization.  相似文献   

17.
Nanosized particles of CoAlxFe2-xO4, where 0?≤?x?≤?2, were synthesized by the sol–gel combustion method and the magnetic properties of these compounds were investigated. According to X-ray diffractograms, the samples are single phase and the crystallite size is between 7 and 25?nm. The room temperature saturation magnetization of the samples was estimated from the cation distribution and ferromagnetic resonance spectra were used to determine the magnetocrystalline anisotropy. The results show that the saturation magnetization and the magnetocrystalline anisotropy vary over a wide range, from maxima of Ms =?0.42?MA/m and K?=?0.39?kJ/m3 for x?=?1.0 to minima of almost zero for x?≈?1.4, a result that could be useful for practical applications of these materials.  相似文献   

18.
TiO2 was selected as effective sintering aid for pressureless sintering of Ti3AlC2 ceramics in this study. The addition of only 5?wt% TiO2 largely promotes the densification and nearly dense Ti3AlC2 ceramic was obtained by pressureless sintering at 1500?°C. Significant strengthening and toughening effects were observed with the addition of TiO2. High Vickers hardness, flexural strength and fracture toughness of 3.22?GPa, 298?MPa and 6.2?MPa?m?1/2, respectively, were achieved in specimen pressureless sintered with 10?wt% TiO2. Additionally, the addition of 5?wt% TiO2 had no deleterious effect on the excellent oxidation resistance of Ti3AlC2 ceramic under 1200?°C water vapor atmosphere, while addition of 10?wt% TiO2 accelerates the oxidation rate by two orders of degree.  相似文献   

19.
LiAlSiO4 (abbreviated as LAS) ceramics doped with variable mass percent of Zn2SiO4 were prepared by conventional solid-state route. The effects of Zn2SiO4 on the phase evolution, microstructure, thermal expansion and mechanical properties have been fully investigated. The results show that Zn2SiO4 reacted with LAS matrix to produce Li2Al2Si3O10 and ZnAl2O4. Fine-grain ZnAl2O4 phase accumulated on the grain boundaries of the main phase, which was helpful to improve the density. Simultaneously, both of the flexure strength and Vickers hardness of the multiphase ceramics were significantly enhanced with the increasing mass percent of Zn2SiO4 for the reason of dispersion strengthening effect. In addition, when the content of Zn2SiO4 increased from 10?wt% to 22.5?wt%, the coefficient of thermal expansion (CTE) of the composite ceramics increased monotonously from ??5.24?×?10?6/K to 1.49?×?10?6/K. Typically, the LAS ceramic doping with 17.5?wt% Zn2SiO4 sintered at 1175?°C for 4?h possesses excellent properties: α?=?0.65?×?10?6/K, Hv =?5.34?GPa, σs =?102.6?MPa, which is a promising material in laser gyroscope and precision machining fields.  相似文献   

20.
The mechanical property is a crucial factor in the design of bone tissue engineering scaffolds. In the current study, novel PLLA (Poly-L-lactic acid)–Hydroxyapatite (HA)–yttria-stabilized zirconia (YSZ) nanocomposite scaffold with various compositions was prepared and characterized. The effect of HA and YSZ contents on the mechanical behavior of the resultant composites was investigated. TEM micrograph revealed that HA particles are needle-like in shape and nano in size. Scanning electron microscopy (SEM) micrograph also showed that YSZ powder is in granule form and submicron size. SEM disclosed that all scaffolds had a highly interconnected porous structure and X-ray diffractometry revealed that there were some molecular interactions between PLA (Polylactic acid), HA, and YSZ in the composites. The results depicted that introducing YSZ to the nanocomposite leads to a significant increase in compressive strength, modulus, and densification strain. In addition, flexural strength and modulus showed an upward trend by adding YSZ particles to scaffolds. It should be noted that PLA–20%HA–20%YSZ indicates the highest strength and modulus in both compression and bending tests, though, it did not demonstrate the proper strain compared to other scaffolds. Thus, PLA–15%HA–15%YSZ has been reported as the best candidate due to appropriate strength and strain. Also, energy absorption in nanocomposites showed an upward trend by increasing the amount of YSZ particles. It was found that the strength of samples was declined after being soaked in simulated body fluid. However, scaffolds with HA underwent more decrease in strength compared to samples containing YSZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号