首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 861 毫秒
1.
对Fenton铁泥进行资源化处理,制备了FeSO_4,探究了不同条件对合成产物产率、纯度的影响显著性,结果显示:对产率的影响显著性因素顺序为乙醇体积酸溶温度硫酸体积;3个因素对纯度的影响均不显著。通过XRD检测和催化Fenton实验,发现合成产品和商品FeSO_4·7H_2O的特征峰基本一致,晶相相似;合成产品催化Fenton反应对废水中COD的去除率为44.49%,略低于商品FeSO_4·7H_2O的47.75%,而对水中UV254的去除率则达87%左右,高于商品FeSO_4·7H_2O的去除率(85%)。  相似文献   

2.
采用溶剂热法制备了Fe(Ⅱ)掺杂TiO_2光催化剂,并采用X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)、比表面仪(BET)、扫描电镜(SEM)对其进行表征。考察了光照时间、FeSO_4·7H_2O加入量、pH和Cr(Ⅵ)初始质量浓度对采用该催化剂处理含Cr(Ⅵ)电镀废水效果的影响。得到了较佳的工艺条件为:反应时间120 min,FeSO_4·7H_2O加入量0.3 g,p H 4.0,Cr(Ⅵ)初始质量浓度100 mg/L。该条件下Cr(Ⅵ)的去除率可达81.4%,催化剂的去除效率为35.2 mg/g。  相似文献   

3.
赵国峥  李长波  李夏  张洪林  葛蒙 《应用化工》2016,(4):608-612,616
以三嵌段共聚物F127为模板剂,Na_2SiO_3·9H_2O作为硅源,Ce(NO_3)_3·6H_2O为铈源,在酸性条件下,微波辅助一步合成了三维有序介孔CeO_2-SBA-16。利用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、N2吸附脱附等手段对样品进行表征。研究了硅源与铈源投加量、搅拌时间及微波加热时间对介孔CeO_2-SBA-16结构的影响。结果表明,当硅源与铈源的投加量均为4.71 g,搅拌时间为3 h,微波加热120 min,可得到具有有序介孔孔道的CeO_2-SBA-16,BET方法得到该Ce O2-SBA-16的比表面积为322.8 m~2/g,孔容为0.342 cm~3/g,平均孔径为8.821 nm。  相似文献   

4.
以CaSO_4·2H_2O为原料,柠檬酸铵(C_6H_(17)N_3O_7)为添加剂,在水热温度130℃,搅拌速率60r·min~(-1),反应2h的条件下制备α-CaSO_4·0.5H_2O。采用X射线衍射仪(XRD)、场发射扫描电子显微镜(SEM)、场发射透射电子显微镜(TEM)、热重分析仪(TG)、差热示差扫描量热仪(DSC)、傅里叶红外光谱仪(FT-IR)和X射线光电子能谱测定元素结合能(XPS)表征α-CaSO_4·0.5H_2O晶体的形貌和结构,探讨不同浓度C_6H_(17)N_3O_7对α-CaSO_4·0.5H_2O的晶体和结晶过程的影响。研究结果表明,C_6H_(17)N_3O_7会抑制α-CaSO_4·0.5H_2O沿c轴的生长,随着添加C_6H_(17)N_3O_7浓度的增大,α-CaSO_4·0.5H_2O的形貌由针状向柱状转变,晶体的直径由1.5~2μm增至10~12μm,长径比由80:1~100:1降至2:1~3:1。并且在CaSO_4·2H_2O向α-CaSO_4·0.5H_2O转化过程中,C_6H_(17)N_3O_7的添加导致其诱导时间和转化周期延长,生长速率减慢,晶体的热稳定性提高。  相似文献   

5.
以三嵌段共聚物F127为模板剂,Na_2SiO_3·9H_2O作为硅源,Ce(NO_3)_3·6H_2O为铈源,在酸性条件下,微波辅助一步合成了三维有序介孔CeO_2-SBA-16。利用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、N2吸附脱附等手段对样品进行表征。研究了硅源与铈源投加量、搅拌时间及微波加热时间对介孔CeO_2-SBA-16结构的影响。结果表明,当硅源与铈源的投加量均为4.71 g,搅拌时间为3 h,微波加热120 min,可得到具有有序介孔孔道的CeO_2-SBA-16,BET方法得到该Ce O2-SBA-16的比表面积为322.8 m2/g,孔容为0.342 cm2/g,孔容为0.342 cm3/g,平均孔径为8.821 nm。  相似文献   

6.
采用Fenton法处理配位含镍废水,并研究了反应温度、废水初始pH值、H_2O_2的质量浓度、FeSO_4·7H_2O与H_2O_2的质量比、初始EDTA的质量对废水处理效果的影响。结果表明:在反应温度为45℃、反应时间为45 min、初始pH值为3、H_2O_2的质量浓度为10g/L、FeSO_4·7H_2O与H_2O_2的质量比为0.06的条件下,含镍废水中Ni~(2+)的去除率达到94.14%。  相似文献   

7.
以钛白副产物硫酸亚铁为主要原料制备氧化铁黄,考察了NaOH与FeSO_4×7H_2O摩尔比、初始Fe~(2+)浓度、曝气速率和温度对晶种形成的影响及晶种浓度、p H值和FeSO_4×7H_2O投加量对产品的影响,优化了工艺参数.结果表明,在NaOH与FeSO_4×7H_2O摩尔比0.5、初始Fe~(2+)浓度0.7 mol/L、曝气速率2.5 L/min、35℃的条件下,晶种产量和产率分别为4.00 g和12.01 g/h,呈棕黄色胶体状态;在晶种浓度20%(j)、pH=4.5~5.0及FeSO_4×7H_2O投加量60 g的条件下,氧化铁黄产量和产率分别为20.97 g和8.99 g/h,含铁量(以F_e2O_3计)为86.95%.所制氧化铁黄呈较均一的棒状颗粒,物相组成为FeOOH,平均粒径860 nm,比表面积21.98 m2/g,各项指标均优于HG/T 2249-91行业一级品标准.  相似文献   

8.
钛白副产物七水硫酸亚铁固体废弃物堆积存放不仅污染环境,而且浪费铁资源,限制钛白产业发展。以其为原料,用NaOH、NH_(3)·H_(2)O、Na_(2)CO_(3)沉淀剂制得无定型高硫容羟基氧化铁材料,进而制备高附加值的脱硫剂,实现固废资源化利用。采用XRF、XRD、TGA-DSC、N_(2)吸附法、物性分析和性能评价对合成材料和脱硫剂进行分析评价。结果表明,制得的材料是无定型羟基氧化铁,以氧化铁质量计质量分数为84.49%~87.93%,穿透硫容分别是41.32%、47.87%、44.80%;制备的脱硫剂穿透硫容分别是29.03%、34.15%、31.68%。工业生产样堆积密度1.02 kg·L^(-1),抗压碎力183.96 N·cm^(-1),比表面积78.778 m^(2)·g^(-1),孔容0.165 mL·g^(-1),最可几孔径4.66 nm,穿透硫容31.29%。羟基氧化铁脱硫剂可广泛应用于各类原料净化脱硫工艺。  相似文献   

9.
《应用化工》2016,(12):2301-2304
以H_3PO_4、FeSO_4·H_2O、LiOH·H_2O为原料,乙二醇为溶剂,山梨酸为络合剂,采用溶剂热法合成了LiFePO_4/C正极材料,并研究了120,140,160℃合成温度对形貌及电化学性能影响。样品通过X射线衍射(XRD)测试表明,合成的正极材料均为纯相橄榄石结构,扫描电子显微镜(SEM)显示,样品为片状组装成哑铃型组装体,恒电流充放电测试在0.1 C下,140℃首次充放电库伦效率达到了99.8%。  相似文献   

10.
《应用化工》2016,(10):1917-1921
对皮革鞣制废液采用分步投加FeSO_4·7H_2O、H_2O_2法进行预处理,考察了FeSO_4·7H_2O、H_2O_2的投加方式与投加量、反应温度、pH值、反应周期等的影响。结果表明,最佳工艺参数为:温度50℃,pH值5,FeSO_4·7H_2O投加量5 mmol/L,H_2O_2用量50 mmol/L,反应周期3 h。在此工艺条件下,可使废液色度从40 000倍降为10倍,COD、总铬和Cr~(6+)浓度分别从2 700,19.27,18.78 mg/L降为426.7,0.162,0.15 mg/L,达到了《制革及毛皮加工工业水污染物排放标准》(GB 30486—2013)要求。方法主要是利用先投加FeSO_4·7H_2O还原Cr~(6+),搅拌反应一段时间后,再投加H_2O_2形成Fenton试剂。其去除机制有别于传统Fenton试剂,主要是针对皮革鞣制废液中的Cr~(6+)浓度高这一水质特色,先用Fe~(2+)还原Cr~(6+),并利用Cr_2O_72-的强氧化性,在酸性条件H+与H_2O_2的共同作用下,形成Fe~(2+)、Fe~(3+)、Cr~(3+)、Cr~(6+)、H_2O_2、·OH、OH-等离子的共氧化和共沉淀体系,实现色度、Cr~(6+)、COD和总铬的同步去除。  相似文献   

11.
均匀沉淀法制备纳米氧化铁及工艺优化   总被引:1,自引:0,他引:1  
为研制生物质气化用纳米氧化铁掺杂的镍基催化剂,以硝酸铁为原料、尿素为沉淀剂,采用均匀沉淀法制备了纳米氧化铁,并利用X射线衍射仪(XRD)、扫描电镜(SEM)对产品性能进行了表征.同时,探讨了制备条件对氧化铁产品产率的影响,得出了最佳工艺条件:尿素与硝酸铁物质的量比为5∶1,沉淀反应温度为125 ℃,铁盐浓度为0.20 mol/L.最佳条件下所得纳米氧化铁粒子呈球形,分散性好,纯度较高,属立方晶系结构,平均粒径约为28 nm.  相似文献   

12.
以FeSO_4·7H_2O、Co(NO_3)_2·6H_2O和乙二醇为主要原料,采用水热法制备Co/Fe催化剂,通过XRD、FTIR、BET等检测手段对其结构进行表征,并考察了Co/Fe催化剂催化硼氢化钠还原水中对硝基苯酚的活性。结果表明,Co/Fe催化剂以CoFe_2O_4形式存在,其催化活性随钴含量的增加逐渐增强,催化反应过程符合准一级反应动力学方程;在Co/Fe-1/2(钴铁物质的量比为1∶2)催化剂用量为0.020 0 g、硼氢化钠用量为2.0 mL时,催化反应速率最大,反应速率常数为0.359 2 min~(-1),催化效果最好。  相似文献   

13.
采用Fenton氧化法对高浓度废乳化液处理进行了研究,基于Box-Behnken响应面法,考察了初始pH、FeSO_4·7H_2O加入量、H_2O_2加入量的单独作用和交叉作用,并建立了COD去除率数学模型,结果表明:影响因子显著性FeSO_4·7H_2O加入量初始pHH_2O_2加入量,初始pH与H_2O_2加入量的交叉作用显著;数学模型回归性较好,预测最佳COD去除率为89.46%。确定了Fenton氧化最佳条件为:初始pH为4.1,FeSO_4·7H_2O加入量为22 mmol/L,H_2O_2加入量为636 mmol/L,验证试验结果为89.11%,与拟合的二次回归模型预测值基本相符。  相似文献   

14.
以氯铂酸(H_2PtCl_6·6H_2O)为前驱体、三缩四乙二醇(TEG)为溶剂和还原剂、聚乙烯吡咯烷酮(PVP)为稳定剂,在160℃下油浴反应3 h,合成了Pt纳米颗粒,利用TEM、SEM、XRD和XPS等技术对Pt纳米颗粒的形貌和结构进行了表征,初步探索了其电催化性能。结果表明,所得Pt纳米颗粒为形貌单一、大小均匀、平均粒径约(60±5) nm的Pt纳米绒球,反应体系的最适宜H_2PtCl_6∶C_6H_5COOH∶PVP物质的量比为1∶15∶22.5;所得Pt纳米绒球的电催化活性相对于商业铂黑明显增强。  相似文献   

15.
采用Fenton法对水中几种氨基甲酸酯类农药(速灭威、克百威和抗蚜威)进行降解,考察了时间、FeSO_4·7H_2O用量、H_2O_2体积等因素对农药降解率的影响。结果表明,时间、FeSO_4·7H_2O用量、H_2O_2用量对三种农药的降解具有重要影响,随着时间的增加,三种农药的降解率逐渐增加,在2 h内降解速度最快,之后逐渐趋于平缓;当FeSO_4·7H_2O用量1 g时,三种农药的降解率随着FeSO_4·7H_2O用量的增加而增加;三种农药的降解率随着H_2O_2体积的增加而逐渐增加,当H_2O_2体积为6 mL时,三种农药的降解率都达到90%以上。在优化的实验条件下,三种农药的降解率分别为速灭威95.5%,克百威98.9%,抗蚜威93.5%。  相似文献   

16.
以氧化石墨为模版剂,以FeSO_4·7H_2O、H_3PO_4、LiOH·H_2O、水合肼为原料,采用水热法在185℃下分别反应2、4、6 h合成磷酸铁锂前驱体,然后高温煅烧合成新型梭形LiFePO_4/C复合锂离子电池正极材料。通过TGDSC确定高温煅烧温度为600℃,采用XRD、SEM、LAND电池测试仪等分析测试手段对材料的结构、形貌及电化学性能进行测试,发现:185℃/(4 h)水热反应的前驱体经600℃/(2 h)获得的梭形LiFePO_4/C材料具有较好的电化学性能,室温、0.2 C下,2.7~4.2 V电压范围进行充放电测试,放电比容量达141.2 m Ah/g。  相似文献   

17.
《应用化工》2015,(12):2268-2270
以Ca(NO_3)_2·4H_2O、Mg(NO3)2·6H_2O、Al(NO_3)_3·9H_2O作为原料,通过共沉淀法成功制备了Ca-Mg-AlLDHs层状材料。该层状材料经450℃煅烧后,Ca-Mg-Al-LDHs层状结构坍塌并转变成复合金属氧化物(LDO),该材料离子吸附性能增强。比表面积和孔径分析表明Ca-Mg-Al-LDHs(450℃煅烧后)显示了微介孔特性,比表面积为201 m2/g,孔径约为18.2 nm。Ca-Mg-Al-LDHs层状材料(450℃煅烧后)处理高氟水研究结果表明吸附时间超过7 h后,氟去除率可以达到95%以上。  相似文献   

18.
采用Fenton法对水中几种氨基甲酸酯类农药(速灭威、克百威和抗蚜威)进行降解,考察了时间、FeSO_4·7H_2O用量、H_2O_2体积等因素对农药降解率的影响。结果表明,时间、FeSO_4·7H_2O用量、H_2O_2用量对三种农药的降解具有重要影响,随着时间的增加,三种农药的降解率逐渐增加,在2 h内降解速度最快,之后逐渐趋于平缓;当FeSO_4·7H_2O用量<1 g时,三种农药的降解率随着FeSO_4·7H_2O用量的增加而增加;三种农药的降解率随着H_2O_2体积的增加而逐渐增加,当H_2O_2体积为6 mL时,三种农药的降解率都达到90%以上。在优化的实验条件下,三种农药的降解率分别为速灭威95.5%,克百威98.9%,抗蚜威93.5%。  相似文献   

19.
《应用化工》2022,(12):2268-2270
以Ca(NO_3)_2·4H_2O、Mg(NO3)2·6H_2O、Al(NO_3)_3·9H_2O作为原料,通过共沉淀法成功制备了Ca-Mg-AlLDHs层状材料。该层状材料经450℃煅烧后,Ca-Mg-Al-LDHs层状结构坍塌并转变成复合金属氧化物(LDO),该材料离子吸附性能增强。比表面积和孔径分析表明Ca-Mg-Al-LDHs(450℃煅烧后)显示了微介孔特性,比表面积为201 m2/g,孔径约为18.2 nm。Ca-Mg-Al-LDHs层状材料(450℃煅烧后)处理高氟水研究结果表明吸附时间超过7 h后,氟去除率可以达到95%以上。  相似文献   

20.
《应用化工》2022,(10):1917-1921
对皮革鞣制废液采用分步投加FeSO_4·7H_2O、H_2O_2法进行预处理,考察了FeSO_4·7H_2O、H_2O_2的投加方式与投加量、反应温度、pH值、反应周期等的影响。结果表明,最佳工艺参数为:温度50℃,pH值5,FeSO_4·7H_2O投加量5 mmol/L,H_2O_2用量50 mmol/L,反应周期3 h。在此工艺条件下,可使废液色度从40 000倍降为10倍,COD、总铬和Cr(6+)浓度分别从2 700,19.27,18.78 mg/L降为426.7,0.162,0.15 mg/L,达到了《制革及毛皮加工工业水污染物排放标准》(GB 30486—2013)要求。方法主要是利用先投加FeSO_4·7H_2O还原Cr(6+)浓度分别从2 700,19.27,18.78 mg/L降为426.7,0.162,0.15 mg/L,达到了《制革及毛皮加工工业水污染物排放标准》(GB 30486—2013)要求。方法主要是利用先投加FeSO_4·7H_2O还原Cr(6+),搅拌反应一段时间后,再投加H_2O_2形成Fenton试剂。其去除机制有别于传统Fenton试剂,主要是针对皮革鞣制废液中的Cr(6+),搅拌反应一段时间后,再投加H_2O_2形成Fenton试剂。其去除机制有别于传统Fenton试剂,主要是针对皮革鞣制废液中的Cr(6+)浓度高这一水质特色,先用Fe(6+)浓度高这一水质特色,先用Fe(2+)还原Cr(2+)还原Cr(6+),并利用Cr_2O_72-的强氧化性,在酸性条件H+与H_2O_2的共同作用下,形成Fe(6+),并利用Cr_2O_72-的强氧化性,在酸性条件H+与H_2O_2的共同作用下,形成Fe(2+)、Fe(2+)、Fe(3+)、Cr(3+)、Cr(3+)、Cr(3+)、Cr(6+)、H_2O_2、·OH、OH-等离子的共氧化和共沉淀体系,实现色度、Cr(6+)、H_2O_2、·OH、OH-等离子的共氧化和共沉淀体系,实现色度、Cr(6+)、COD和总铬的同步去除。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号