首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel and facile synthesis route for the manufacture of transparent and uniform self-assembled nanocrystalline Cr2O3 (nc-Cr2O3) thin films with different morphology was reported, utilizing chromium nitrate as the inorganic source and triblock copolymer F127 as the morphology-directing agent by the evaporation-induced assembly (EIA) method. X-ray powder diffraction (XRD), thermogravimetry-differential scanning calorimetry (TG-DSC), N2-sorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the as-prepared nc-Cr2O3 thin films. The Cr2O3 thin film with different morphology was obtained by changing the relative humidity. The possible formation mechanism of the nc-Cr2O3 thin films with different morphologies was discussed.  相似文献   

2.
The golden and ultraviolet-absorbed CeO2-TiO2 film was prepared on soda-lime glass substrate with the thickness of 2 mm via the sol-gel method. The transmission spectra in range of 200 nm-800 nm were measured, and the crystallization, the abrasion and acid resistance were also investigated. The appropriate sol contents and heat-treatment schedule were determined. The results indicate that the appropriate molar ratio of Ce/Ti was 3:5 to 5:6. The ultraviolet-absorbance ability increased with the increase of the Ce/Ti molar ratio, but when the Ce/Ti molar ratio was higher than 1.5, the homogeneity of the film was deteriorated. With the increase of heat-treatment temperature, the main wavelengths of the color of the coated glasses were equal, but the color' s saturation decreased; the transmission peaks were the same, while the intensity of the peaks decreased. The roughness, abrasion and acid resistance of the film were also enhanced at the same time. The appropriate heat- treatment temperature may be 340℃.  相似文献   

3.
The effect of Ga2O3 on the structure and properties of calcium aluminate glasses fabricated by vacuum melting process was investigated by Raman spectrum, differential scanning calorimeter (DSC), and infrared spectrum methods. The results show that calcium aluminate glass network only consists of [AlO4] tetrahedral units. With the gradual addition of Ga2O3, the quantity of [GaO4] tetrahedral units increases. Substitution of Ga2O3 for Al2O3 results in a decrease in T g T x, and T p, and an increase in the thermal stable index ΔT. Similarly, the absorption band around 3.0 μm obviously reduces and the transparency in 4.0-6.0 μm rapidly increases with increasing Ga2O3 content. However, the chemical stability of calcium aluminate glasses decreases if Ga2O3 is introduced due to the increasing of [GaO4] units in the glass network.  相似文献   

4.
Neodymium-substituted bismuth titanate (Bi3NdTi3O12, BNT) thin films were prepared on quartz substrates by a metal-organic solution deposition process. The crystalline structure was evaluated by X-ray diffraction. Waveguide property was investigated by using prism coupling technique and optical transmittance measurement. The optical nonlinearities of the film were measured by the top-hat Z-scan techniques and a large positive nonlinear refractive index, nonlinear refractive coefficient and two-photon absorption coefficient were determined to be 3.84 × 10−7 esu, 0.7523 cm2/GW and 4.81 × 104 cm/GW, respectively. These results reveal that the BNT film may be a kind of new multifunctional materials.  相似文献   

5.
(Ba0.4Pb0.3)Sr0.3TiO3 thin films were fabricated via pulsed laser deposition (PLD) technique on Pt/TiO2/SiO2/Si substrate. The crystallization of the films was characterized by XRD and FSEM, and the experimental results suggested deposition parameters, especially the deposition temperature was the key factor in forming the perovskite structure. The dielectric properties of the film deposited with optimized parameters were studied by an Agilent 4294A impedance analyzer at 1 MHz. The dielectric constant was 772, and the loss tangent was 0.006. In addition, the well-shaped hysteresis loop also showed that the film had a well performance in ferroelectric. The saturated polarization P, remnant polarization Pr and coercive field E were about 4.6 μC/cm2, 2.5 μC/cm2 and 23 kV/cm (the coercive voltage is 0.7 V), respectively. It is suggested the film should be a promising candidate for microwave applications and nonvolatile ferroelectric random access memories (NvFeRAMs).  相似文献   

6.
Cu2ZnSnS4 (CZTS) thin films were successfully fabricated on glass substrates by sulfurizing Cu-Sn-Zn multilayer precursors, which were deposited by ion beam sputtering and RF magnetron sputtering, respectively. The structural, electrical and optical properties of the prepared films under various processing conditions were investigated in detail. Results showed that the as-deposited CZTS thin films with the precursors by both ion beam sputtering and RF magnetron sputtering have a composition near stoichiometric. The crystallization of the samples, however, has a strong dependence on the atomic percent of constituents of the prepared CZTS films. A single phase stannite-type structure CZTS with a large absorption coefficient of 104/cm in the visible range could be obtained after sulfurization at 520°C for 2 h. The samples relative to the RF magnetron sputtering showed a low resistivity of 0.073 Ωcm and band gap energy of about 1.53 eV. The samples relative to the ion beam sputtering exhibited a resistivity of 0.36 Ωcm and the band gap energy is about 1.51 eV. Supported by the National Natural Science Foundation of China (Grant No. 10574106), the Planned Science and Technology Project of Guangdong Province (Grant No.2003C05005) and the Natural Science Fund of Zhanjiang Normal University (Grant No.200801)  相似文献   

7.
Cr-doped Li3V2(PO4)3 cathode materials Li3V2−x Cr x (PO4)3 were prepared by a carbothermal reduction(CTR) process. The properties of the Cr-doped Li3V2(PO4)3 were investigated by X-ray diffraction (XRD), scanning electron microscopic (SEM), and electrochemical measurements. Results show that the Cr-doped Li3V2(PO4)3 has the same monoclinic structure as the undoped Li3V2(PO4)3, and the particle size of Cr-doped Li3V2(PO4)3 is smaller than that of the undoped Li3V2(PO4)3 and the smallest particle size is only about 1 μm. The Cr-doped Li3V2(PO4)3 samples were investigated on the Li extraction/insertion performances through charge/discharge, cyclic voltammogram (CV), and electrochemical impedance spectra(EIS). The optimal doping content of Cr was that x=0.04 in the Li3V2−x Cr x (PO4)3 samples to achieve high discharge capacity and good cyclic stability. The electrode reaction reversibility was enhanced, and the charge transfer resistance was decreased through the Cr-doping. The improved electrochemical performances of the Cr-doped Li3V2(PO4)3 cathode materials are attributed to the addition of Cr3+ ion by stabilizing the monoclinic structure. Funded by the Guangxi Natural Science Foundation(No. 0832259) and the National Basic Research Program of China (No. 2007CB613607)  相似文献   

8.
We investigated the effects of heating rate on the process parameters of superplastic forming for Zr55Cu30Al10Ni55 by differential scanning calorimetry. The continuous heating and isothermal annealing analyses suggested that the temperatures of glass transition and onset crystallization are heating rate-dependent in the supercooled liquid region. Then, the time-temperature-transformation diagram under different heating rates indicates that increasing the heating rate can lead to an increase of the incubation time at the same anneal temperature in the supercooled liquid region. Based on the Arrhenius relationship, we discovered that the incubation time increases by 1.08–1.11 times with double increase of the heating rate at the same anneal temperature, and then verified it by the data of literatures and the experimental results. The obtained curve of the max available incubation time reveals that the incubation time at a certain anneal temperature in the supercooled liquid region is not infinite, and will increase with increasing heating rate until this temperature shifts out of the supercooled liquid region because of exceeding critical heating rate. It is concluded that heating rate must be an important processing parameter of superplastic forming for Zr55Cu30Al10Ni5.  相似文献   

9.
The nanosized Ca3Co2O6 powder was synthesized via sol-gel process.The phase composition was characterized by means of X-ray diffraction.Polycfrystalline swnples of Ca3Co2O6 were prepared by a sintering procedure of nanosized power.The seebeck cofficient and electrical conductivity of the samples were measured from 450K up to 750 K.The results show that the Seebeck coefficient increases with the increasing temperature.The electronic structures were calculated using the self-cwtsistent full-potential linearized augmentedc plane-wave (LAPW) method within the density functional theory.The relationship between thermoelectric property and electronic structures was discussed.  相似文献   

10.
The Bi4Ti3Oi2 and Bi3.25La0.75Ti3O12 thin films were prepared on the Pt/Ti/SiO2/Si substrate using the sol-gel method. The effect of La doping on the microstructure and ferroelectric properties of Bi4Ti3O12 films were investigated. Both the Bi4Ti3O12 and Bi3.25La0.75Ti3O12 thin films exhibited typical bismuth layered perovskite structure. The 2Pr (remanent polarization) value of Bi3.25La0.75Ti3O12 thin films is 18.6 μC/cm^2, which is much larger than that of Bi4Ti3O12 thin films. And the Bi3.2eLa0.75Ti3O12 films show fatigue-free behavior, while the Bi4Ti3O12 thin films exhibit the fatigue problem. The mechanism of improvement of La doping was discussed.  相似文献   

11.
SrTiO3 thin film was successfully prepared on the functionalized organic self-assembled monolayers (SAMs) by the Liquid Phase Deposition (LPD) method. The as-prepared samples were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscopy (SEM) and metallographic microscope. Measurement of contact angle showed that the hydrophobe substrate was changed into hydrophile by UV irradiation. AFM photographs of octadecyl-trichloro-silane self-assembled monolayer (OTS-SAM) surface approved that UV irradiation did change the morphology of OTS monolayer and provided evidence for the conversion of hydrophilic characteristic. Photographs of Metallographic Microscope showed that OTS-SAM had an active effect on the deposition of SrTiO3 thin film. XRD and SEM indicated that the thin film was of pure cubic phase SrTiO3 and composed of nanosized grains with a size in the range of 100–500 nm. The formation mechanism of the SrTiO3 film was proposed.  相似文献   

12.
The effect of ZnO-B2O3(ZB) glass addition on the sintering behavior, microstructures and microwave dielectric properties of BaO-Nd2O3-TiO2-Bi2O3 (BNTB) system was investigated with the aid of X-ray diffraction, scanning electron microscopy and capacitance meter. It is found that the ZB glass addition, acting as a sintering aid, can effectively lower the sintering temperature of BNTB system to 850 °C. The dielectric constant of BNTB-ZB ceramics increases with the increase of soaking time and the value of dielectric loss decreased with increasing soak time. The optical dielectric properties at 1 GHz of ɛ=74, tan δ=4×10−4, and TCC=25 ppm/°c were obtained for the BNTB system doped with 25 wt% ZB glass sintered at 850 °C for 2 h, representing that the BNTB-ZB ceramics could be promising for multilayer low temperature co-fired ceramics applications.  相似文献   

13.
The phase structure and electrical properties of pure and La2O3-doped Bi-InO3-PbTiO3 (BI-PT) ceramics were studied respectively. In (1 -x)BI-xPT (x=0.72-0.80) ceramics, the stability of tetragonal phase increased with increasing x, and pure perovskite structure was obtained for x=-0.80 ceramics. The phase transition temperature range was between 575 ℃ and 600 ℃ for x=0.72-0.80 ceramics, higher than that of PT (-490 ℃). The c/a ratio almost linearly decreased with increasing La2O3 content in x-0.80 ceramics. It is believed that Pb^2+ vacancies were formed by La^3+ substituting Pb^2+ in La2O3-doped BI-PT ceramics. Tc shifted to lower temperature by 30 ℃/mol% La2O3. The maximum dielectric constant 8557 around 559 ℃ was exhibited in 0.5mol%-doped BI-0.80PT ceramics. La2O3-doped ceramics could be poled resulting from decreasing of c/a ratio and improving of dielectric loss and resistivity. The maximum piezoelectric coefficient d33 was 12 pC/N for 2mol%-doped BI-0.80PT ceramics.  相似文献   

14.
Influence of aluminum addition on the structures and properties of SiO2-B2O3-Al2O3-CaO vitrified bond at low sintering temperature and high strength was discussed. FTIR and XRD analyses were used to characterize the structures of the basic vitrified bond with different contents of aluminum. The bending strength and the thermal expansion coefficients were also tested. Meanwhile, the microstructures of composite specimens at sintering temperature of 660 °C were observed by scanning electron microscope (SEM). The experimental results showed that the properties of vitrified bond with 1wt% aluminum were improved significantly, where the bending strength, Rockwell hardness, and thermal expansion coefficient of the vitrified bond reached 132 MPa, 63 HRB, and 6.73×10-6 °C-1, respectively.  相似文献   

15.
We have investigated the preparation and properties of Bi3.4Ce0.6Ti3O12 thin films. The Bi3.4Ce0.6Ti3O12 thin films were fabricated on the Pt/Ti/SiO2/Si substrates using sol-gel method. The structure and morphology of the films were characterized using X-ray diffraction and atomic force microscopy. The thin films showed a perovskite phase and dense microstructure. The dielectric constant and the dissipation factor of the Bi3.4Ce0.6Ti3O12 thin films were about 172 and 0.031 at 1 kHz, respectively. The 2P r and 2E c of the Bi3.4Ce0.6Ti3O12 thin films were 67.1 μC/cm2 and 299.7 kV/cm, respectively, under an applied field of 600 kV/cm. The Bi3.4Ce0.6Ti3O12 film did not show fatigue up to 4.46×109 switching cycles at a frequency of 1 MHz, and showed good insulating behavior according to the test of leakage current. Supported by the Natural Science Foundation of Hubei Province (Grants No. 2004ABA082)  相似文献   

16.
The electronic structures of bulk Bi2Te3 crystals were investigated by the first-principles calculations. The transport coefficients including Seeback coefficient and power factor were then calculated by the Boltzmann theory, and further evaluated as a function of chemical potential assuming a rigid band picture. The results suggest that p-type doping in the Bi2Te3 compound may be more favorable than n-type doping. From this analysis results, doping effects on a material will exhibit high ZT. Furthermore, we can also find the right doping concentration to produce more efficient materials, and present the “advantage filling element map” in detail.  相似文献   

17.
The Bi4Zr0.5Ti2.5O12 (BZT) thin films were fabricated on the LaNiO3 bottom electrode using sol-gel method. The structure and morphology of the films were characterized using X-ray diffraction, AFM and SEM. The results show that the films have a perovskite phase and dense microstructure. The 2Pr and 2Vc of the Pt/BZT/LaNiO3 capacitor are 28.2 μC/cm2 and 14.7 V respectively at an applied voltage of 25 V. After the switching of 1×1010 cycles, the Pr value decreases to 87% of its pre-fatigue values. The dielectric constant (ε) and the dissipation factor (tanδ) of the BZT thin films are about 204 and 0.029 at 1 kHz, respectively. The films show good insulating behavior according to the test of leakage current. The clockwise C-V hysteresis curve observed shows that the Pt/BZT/LaNiO3 structure has a memory effect because of the BZT film's ferroelectric polarization.  相似文献   

18.
Ferroelectric Ba0.7Sr0.3TiO3(BST) and partially Pb^2+ substituted for Ba^2+ ceramics (Ba0.7-xPbx)Sr0.3TiO3 (x=0.1-0.4, BPST) were prepared by using conventional solid-reaction method. XRD analysis shows that the samples microstructure changes from cubic phase to tetragonal one with the Pb^2+ content increasing. ESEM analysis shows that the Pb^2+ substituted samples have a denser and more uniform surface morphology than that of pure BST. Measured electrical properties suggest that the Pb^2+ substitution for Ba^2+ in the BST system enhances the ferroelectric performance obviously when x=0.2. In addition, the substitution increases the samples Curie temperature (To) r (Ba0.5Pb0.2)Sr0.3TiO3 ceramic has good ferroelectric properties measured at a maximal electric field of 30 kV/cm under the condition of room temperature. The corresponding saturated polarization (Ps), remnant polarization (Pr) and coercive field (Ec) is respectively 15.687 μC/cm^2, 8.100 μ C/cm^2 and 6.611 kV/cm. The measured Tc of (Ba0.5Pb0.2)Sr0.3TiO3 is 117 ℃.  相似文献   

19.
The dielectric ceramics with a main crystal phase of MGTiO3 and additional crystal phase of CaTiO3 were prepared by the conventional electronic ceramics technology .the strucures of MgTiO3 are ilmenitetype,and belong to hexagonal syngony.the ratio of MgTiO3 to Ca TiO3 doping on the dielectric properties of MGTiO3-CaTiO3(MCT)ceranics were inrestigated.the addition of B2O3 decreases the sintering temperatnre and results in rapid desification without obrious negative effect on the Q values of the system(Q=1/tan ).B2O3 exists as liquid phase in the sintering process,promoting the reactions as a singering agent.  相似文献   

20.
NaNbO3-Co2O3 co-added PZN-PZT (PZCNNT) ceramics were prepared using conventional solid state reaction. The piezoelectric and dielectric properties were measured. The experimental results show that the addition of 0.3mo1% Co2O3 leads to low dielectric loss (tgδ) in PZCNNT ceramics and the proper addition of NaNbO3 not only improves piezoelectric properties but also decreases intensively dielectric loss and mechanical loss. The optimal ceramic having d33=310 pC/N, kp=0.59, εr=985, tgδ=0.0034, Qm=1380 was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号