首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photobleaching of 5-aminolaevulinic acid (ALA)-induced protoporphyrin IX (PpIX) was investigated during superficial photodynamic therapy (PDT) in normal skin of the SKH HRt hairless mouse. The effects of light dose and fluence rate on the dynamics and magnitude of photobleaching and on the corresponding PDT-induced dam-age were examined. The results show that the PDT damage cannot be predicted by the total light dose. Photo-bleaching was monitored over a wide range of initial PpIX fluorescence intensities. The rate of PpIX photo-bleaching is not a simple function of fluence rate but is dependent on the initial concentration of sensitizer. Also, at high fluence rates (50–150 mW/cm2, 514 nm) oxygen depletion is shown to have a significant effect. The rate of photobleaching with respect to light dose and the corresponding PDT damage both increase with decreasing fluence rate. We therefore suggest that the definition of a bleaching dose as the light dose that causes a 1/e reduction in fluorescence signal is insufficient to describe the dynamics of photobleaching and PDT-induced dam-age. We have detected the formation of PpIX photoproducts during the initial period of irradiation that were themselves subsequently photobleached. In the absence of oxygen, PpIX and its photoproducts are not photo-bleached. We present a method of calculating a therapeutic dose delivered during superficial PDT that demonstrates a strong correlation with PDT damage.  相似文献   

2.
Photodynamic therapy (PDT) for actinic field cancerization is effective but painful. Pain mechanisms remain unclear but fluence rate has been shown to be a critical factor. Lower fluence rates also utilize available oxygen more efficiently. We investigated PDT effect in normal SKH1-HR mice using low and high fluence rate aminolevulinic acid (ALA) PDT and a fractionated illumination scheme. Six groups of six mice with different light treatment parameters were studied. Visual skin damage was assessed up to 7 days post-PDT. Fluorescence and reflectance spectroscopy during illuminations provided us with real-time information about protoporphyrin IX (PpIX) photobleaching. A novel dosing approach was introduced in that we used a photobleaching percentage instead of a preset fluence. Data show similar total and maximum damage scores in high and low fluence rate groups. Photobleaching of PpIX in the low fluence rate groups shows a trend toward more efficient photobleaching. Results indicate that low fluence rate PDT is as effective as and more efficient than high fluence rate PDT in normal mouse skin. Low fluence rate PDT light protocols need to be explored in human studies in search for an effective and well-tolerated treatment for actinic field cancerization.  相似文献   

3.
Photobleaching kinetics of aminolevulinic acid-induced protoporphyrin IX (PpIX) were measured in the normal skin of rats in vivo using a technique in which fluorescence spectra were corrected for the effects of tissue optical properties in the emission spectral window through division by reflectance spectra acquired in the same geometry and wavelength interval and for changes in excitation wavelength optical properties using diffuse reflectance measured at the excitation wavelength. Loss of PpIX fluorescence was monitored during photodynamic therapy (PDT) performed using 514 nm irradiation. Bleaching in response to irradiances of 1, 5 and 100 mW cm-2 was evaluated. The results demonstrate an irradiance dependence to the rate of photobleaching vs irradiation fluence, with the lowest irradiance leading to the most efficient loss of fluorescence. The kinetics for the accumulation of the primary fluorescent photoproduct of PpIX also exhibit an irradiance dependence, with greater peak accumulation at higher irradiance. These findings are consistent with a predominantly oxygen-dependent photobleaching reaction mechanism in vivo, and they provide spectroscopic evidence that PDT delivered at low irradiance deposits greater photodynamic dose for a given irradiation fluence. We also observed an irradiance dependence to the appearance of a fluorescence emission peak near 620 nm, consistent with accumulation of uroporphyrin/coproporphyrin in response to mitochondrial damage.  相似文献   

4.
The presence of phased protoporphyrin IX (PpIX) bleach kinetics has been shown to correlate with esophageal response to 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT) in animal models. Here we confirm the existence of phased PpIX photobleaching by increasing the temporal resolution of the fluorescence measurements using the therapeutic illumination and long wavelength fluorescence detection. Furthermore fluorescence differential pathlength spectroscopy (FDPS) was incorporated to provide information on the effects of PpIX and tissue oxygenation distribution on the PpIX bleach kinetics during illumination. ALA at a dose of 200 mg kg(-1) was orally administered to 15 rats, five rats served as control animals. PDT was performed at an in situ measured fluence rate of 75 mW cm(-2) using a total fluence of 54 J cm(-2). Forty-eight hours after PDT the esophagus was excised and histologically examined for PDT-induced damage. Fluence rate and PpIX photobleaching at 705 nm were monitored during therapeutic illumination with the same isotropic probe. A new method, FDPS, was used for superficial measurement on saturation, blood volume, scattering characteristics and PpIX fluorescence. Results showed two-phased PpIX photobleaching that was not related to a (systematic) change in esophageal oxygenation but was associated with an increase in average blood volume. PpIX fluorescence photobleaching measured using FDPS, in which fluorescence signals are only acquired from the superficial layers of the esophagus, showed lower rates of photobleaching and no distinct phases. No clear correlation between two-phased photobleaching and histologic tissue response was found. This study demonstrates the feasibility of measuring fluence rate, PpIX fluorescence and FDPS during PDT in the esophagus. We conclude that the spatial distribution of PpIX significantly influences the kinetics of photobleaching and that there is a complex interrelationship between the distribution of PpIX and the supply of oxygen to the illuminated tissue volume.  相似文献   

5.
Experimental therapies for Barrett's esophagus, such as 5-aminolevulinic acid (ALA)-based photodynamic therapy (PDT), aim to ablate the premalignant Barrett's epithelium. However, the reproducibility of the effects should be improved to optimize treatment. Accurate irradiation with light of a proper wavelength (633 nm), fluence and fluence rate has shown to be critical for successful ALA-PDT. Here, we have used in situ light dosimetry to adjust the fluence rate measured within the esophagus for individual animals and monitored protoporphyrin IX (PpIX) fluorescence photobleaching simultaneously. Rats were administered 200 mg kg-1 ALA (n = 14) or served as control (n = 7). Animals were irradiated with an in situ measured fluence rate of 75 mW cm-2 and a fluence of 54 J cm-2. However, this more accurate method of light dosimetry did not decrease the variation in tissue response. Large differences were also observed in the dynamics of PpIX fluorescence photobleaching in animals that received the same measured illumination parameters. We found that higher PpIX fluorescence photobleaching rates corresponded with more epithelial damage, whereas lower rates corresponded with no response. A two-phased decay in PpIX fluorescence could be identified in the response group, with a rapid initial phase followed by a slower rate of photobleaching. Non-responders did not show the rapid initial decay and had a significantly lower rate of photobleaching during the second phase of the decay (P = 0.012).  相似文献   

6.
Light fractionation with dark periods of the order of hours has been shown to considerably increase the efficacy of 5-aminolevulinic acid-photodynamic therapy (ALA-PDT). Recent investigations have suggested that this increase may be due to the resynthesis of protoporphyrin IX (PpIX) during the dark period following the first illumination that is then utilized in the second light fraction. We have investigated the kinetics of PpIX fluorescence and PDT-induced damage during PDT in the normal skin of the SKH1 HR hairless mouse. A single illumination (514 nm), with light fluences of 5, 10 and 50 J cm-2 was performed 4 h after the application of 20% ALA, to determine the effect of PDT on the synthesis of PpIX. Results show that the kinetics of PpIX fluorescence after illumination are dependent on the fluence delivered; the resynthesis of PpIX is progressively inhibited following fluences above 10 J cm-2. In order to determine the influence of the PpIX fluorescence intensity at the time of the second illumination on the visual skin damage, 5 + 95 and 50 + 50 J cm-2 (when significantly less PpIX fluorescence is present before the second illumination), were delivered with a dark interval of 2 h between light fractions. Each scheme was compared to illumination with 100 J cm-2 in a single fraction delivered 4 or 6 h after the application of ALA. As we have shown previously greater skin damage results when an equal light fluence is delivered in two fractions. However, significantly more damage results when 5 J cm-2 is delivered in the first light fraction. Also, delivering 5 J cm-2 at 5 mW cm-2 + 95 J cm-2 at 50 mW cm-2 results in a reduction in visual skin damage from that obtained with 5 + 95 J cm-2 at 50 mW cm-2. A similar reduction in damage is observed if 5 + 45 J cm-2 are delivered at 50 mW cm-2. PpIX photoproducts are formed during illumination and subsequently photobleached. PpIX photoproducts do not dissipate in the 2 h dark interval between illuminations.  相似文献   

7.
Barrett's esophagus (BE) can experimentally be treated with 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT), in which ALA, the precursor of the endogenous photosensitizer protoporphyrin IX (PpIX) and subsequent irradiation with laser light are applied to destroy the (pre)malignant tissue. Accurate dosimetry is critical for successful ALA-PDT. Here, in vivo dosimetry and kinetics of PpIX fluorescence photobleaching were studied in a rat model of BE. The fluence and fluence rate were standardized in vivo and PpIX fluorescence was measured simultaneously at the esophageal wall during ALA-PDT and plotted against the delivered fluence rather than time. Rats with BE were administered 200 mg kg(-1) ALA (n = 17) or served as control (n = 4). Animals were irradiated with 633 nm laser light at a measured fluence rate of 75 mW cm(-2) and a fluence of 54 J cm(-2). Large differences were observed in the kinetics of PpIX fluorescence photobleaching in different animals. High PpIX fluorescence photobleaching rates corresponded with tissue ablation, whereas low rates corresponded with no damage to the epithelium. Attempts to influence tissue oxygenation by varying balloon pressure and ventilation were shown not to be directly responsible for the differences in effect. In conclusion, in vivo dosimetry is feasible in heterogeneous conditions such as BE, and PpIX fluorescence photobleaching is useful to predict the tissue response to ALA-PDT.  相似文献   

8.
Accumulation of protoporphyrin IX (PpIX) was investigated in normal skin and UV-induced tumours in hairless mice after topical application of a cream containing 2, 8 or 16% of 5-aminolevulinic acid methyl ester (ALA-Me). Higher levels of PpIX were measured in tumours compared to normal skin. The maximal amount of PpIX was reached at 1.5, 3 and 4 h after 2, 8 and 16% ALA-Me application, respectively. Higher tumour to normal skin PpIX fluorescence ratios were measured after application of 8 and 16% ALA-Me than after application of 2%. After irradiation with a broad spectrum of visible light from a slide projector, more than 90% of PpIX was bleached by fluences of 36 and 48 J/cm2, at fluence rates of 10 and 40 mW/cm2 respectively. At these fluences, the PpIX photobleaching rate was significantly higher (P<0.05) in normal mouse skin than in tumours. In addition, for a given fluence, more PpIX was photobleached at the lower fluence rate (10 mW/cm2) than at the higher fluence rate (40 mW/cm2) in normal skin (P<0.001) as well as in tumours (P<0.05) after exposure to 24 J/cm2 of light. In conclusion, the highest tumour to normal skin PpIX ratio was observed 3 h after application of 8% ALA-Me, suggesting that light exposure should be performed at this time in order to achieve an optimal PDT effect in this tumour model.  相似文献   

9.
We examined effects of fluence rate on the photobleaching of the photosensitizer Pc 4 during photodynamic therapy (PDT) and the relationship between photobleaching and tumor response to PDT. BALB/c mice with intradermal EMT6 tumors were given 0.03 mg kg?1 Pc 4 by intratumor injection and irradiated at 667 nm with an irradiance of 50 or 150 mW cm?2 to a fluence of 100 J cm?2. While no cures were attained, significant tumor growth delay was demonstrated at both irradiances compared with drug‐only controls. There was no significant difference in tumor responses to these two irradiances (P = 0.857). Fluorescence spectroscopy was used to monitor the bleaching of Pc 4 during irradiation, with more rapid bleaching with respect to fluence shown at the higher irradiance. No significant correlation was found between fluorescence photobleaching and tumor regrowth for the data interpreted as a whole. Within each treatment group, weak associations between photobleaching and outcome were observed. In the 50 mW cm?2 group, enhanced photobleaching was associated with prolonged growth delay (P = 0.188), while at 150 mW cm?2 this trend was reversed (P = 0.308). Thus, it appears that Pc 4 photobleaching is not a strong predictor of individual tumor response to Pc 4‐PDT under these treatment conditions.  相似文献   

10.
Delta-aminolevulinic acid-photodynamic therapy (ALA-PDT) has emerged as a useful technique in the treatment of superficial basal cell carcinoma, actinic keratosis, squamous cell carcinoma and tumors of other organs. Earlier reports mention that there is reappearance of protoporphyrin IX (PpIX) after photoirradiation of tumors. This property of reappearance of PpIX is being utilized to treat nodular tumors by fractionated light dose delivery. However, there is still no unanimously accepted reason for this reappearance phenomenon and the rate of resynthesis after PDT. On account of this, studies are carried out on the estimation of the pharmacokinetics of the ALA-induced PpIX in mice tumor models and the surrounding normal tissues before and after PDT. Further, a mathematical model based on a multiple compartment system is proposed to estimate the rate parameter for the diffusion of PpIX from the surrounding normal tissues into the tumor tissue (km) caused by photobleaching during PDT with irradiating fluences of 36.0 and 57.6 J/cm2. The km value at two different fluences, 36.0 and 57.6 J/cm2, are estimated as 3.0636+/-0.7083 h(-1) and 6.9231+/-2.17651 h(-1), respectively. Further, the rate parameter for the cleavage and efflux of ALA (k1) and the rate parameter for the evasion of PpIX from the tumor tissues after PDT (kt) were also estimated by fitting the experimental data to the developed mathematical model. The statistical significance of the estimated parameters was determined using Student's t-test. The experimental results and the rate parameters obtained using the proposed compartment model suggest that in addition to the earlier reported reasons, the invasion or diffusion of PpIX from the surrounding tissues to the tumor tissues after photoirradiation might also contribute to the reappearance of PpIX after PDT.  相似文献   

11.
Several options were investigated to increase the efficacy of photodynamic therapy (PDT) using protoporphyrin IX (PpIX) induced by topically applied 5-aminolevulinic acid (ALA). Hairless mice with normal skin or UVB-light-induced skin changes were used as a model. In the first part of the study animals were illuminated immediately (t = 4) or 6 h (t = 10, PpIX fluorescence maximum) after the end of a 4 h ALA application. A total incident light fluence of 100 J/cm2 (514.5 nm) was delivered at a fluence rate of 100 or 50 mW/cm2. The PDT-induced damage to normal skin was more severe after treatment at t = 10 than at t = 4. Illumination at 50 mW/cm2 caused significantly more visible damage than the same light fluence given at 100 mW/cm2. For UVB-illuminated skin, different intervals or fluence rates made no significant difference in the severity of damage, although some qualitative differences occurred. In situ fluence rate measurements during PDT indicated vasoconstriction almost immediately after the start of the illumination. A fluorescein exclusion assay after PDT demonstrated vasoconstriction that was more pronounced in UVB-treated skin than in normal skin. The second part of the study examined the effect of two illuminations. The first illumination bleaches the PpIX fluorescence. At the start of the second illumination, new PpIX had been formed. Light of 514.5 nm was delivered at 100 mW/cm2 to a total incident light fluence of 200 J/cm2 at t = 4 (single illumination) or 100 J/cm2 at t = 4 plus 100 J/cm2 at t = 10. There was no visual difference in skin damage between 100 and 200 J/cm2 single illumination. Two-fold illumination (100 + 100 J/cm2) caused significantly more skin damage, indicating a potentially successful option for increasing the efficacy of topical ALA-PDT.  相似文献   

12.
Monitoring of relevant parameters during photodynamic therapy (PDT) and correlating these with treatment response is necessary to guarantee optimal and reproducible treatment outcome. In this paper we study the correlation between changes in the local tissue optical properties (absorption and scattering coefficients) during ALA-PDT and changes in PpIX fluorescence. The optical properties are measured extremely superficially by employing a single fiber for the delivery and collection of white light to and from the tissue. The measured reflectance spectrum is modeled in terms of four relevant parameters: blood saturation, relative blood volume fraction, scattering intensity and wavelength dependence of the scattering. All these parameters, except the relative blood volume fraction, are shown to correlate with the rate of photobleaching of PpIX, which in turn has previously been shown to correlate with the response of tissues to PDT. These results yield valuable insight in the behavior of these parameters during PDT and their suitability to predict PDT-response for other photosensitizers for which monitoring through photobleaching is not possible.  相似文献   

13.
Laser-induced fluorescence (LIF) investigations have been performed in connection with photodynamic therapy (PDT) of basal cell carcinomas and adjacent normal skin following topical application of 5-aminolaevulinic acid (ALA) in order to study the kinetics of the protoporphyrin IX (PpIX) build-up. Five superficial and 10 nodular lesions in 15 patients are included in the study. Fluorescence measurements are performed prior to the application of ALA, 2, 4 and 6 h post ALA application, immediately post PDT (60 J cm-2 at 635 nm), and 2 h after the treatment. Hence, the build-up, photobleaching and re-accumulation of PpIX can be followed. Superficial lesions show a maximum PpIX fluorescence 6 h post ALA application, whereas the intensity is already the highest 2-4 h after the application in nodular lesions. Immediately post PDT, the fluorescence contribution at 670 nm from the photoproducts is about 2% of the pre-PDT PpIX fluorescence at 635 nm. Two hours after the treatment, a uniform distribution of PpIX is found in the lesion and surrounding normal tissue. During the whole procedure, the autofluorescence of the lesions and the normal skin does not vary significantly from the values recorded before the application of ALA.  相似文献   

14.
An improved method to estimate dose to esophageal tissue was investigated in the setting of photodynamic therapy with aminolevulinic acid-induced protoporphyrin IX (PpIX) treatment. A model of treatment-induced edema in the esophagus mucosa proved to be a well controlled and useful way to test the dosimetry model, and the light from the treatment laser together with the PpIX fluorescence intensity could be quantified reliably in real time. Dosimetry calculations based upon the detected fluorescence and bleaching kinetics were used to calculate the "effective" dose to the tissue, and a correlation was shown to exist between this metric and the edema induced in the esophagus. The difference between animals with no detectable treatment effect and those with significant edema was predictable based upon the dose calculation. The underlying assumption in the interpretation of the data is that rapid photobleaching of PpIX occurs when there is ample oxygen supply, and this bleaching is not present when oxygen is limited. This leads to the prediction that integration of the light and drug dose, in intervals where appreciable photobleaching occurs, should provide a prediction of the relative dose of singlet oxygen produced. This detection system and rodent model can be used for prospective dosimetry studies that focus on optimization of esophageal PDT.  相似文献   

15.
Different distributions of hexyl aminolevulinate (HAL), aminolevulinic acid (ALA) and methyl aminolevulinate (MAL) in the superficial vasculature are not well studied but they are hypothesized to play an important role in topical photodynamic therapy (PDT). The colocalization of fluorescent CD31 and protoporphyrin IX (PpIX) was calculated using confocal microscopy of mouse skin sections to investigate the vascular distribution after topical application. Vascular damage leads to disruption of the normal endothelial adherens junction complex, of which CD144 is an integral component. Therefore, normal CD31 combined with loss of normal fluorescent CD144 staining was visually scored to assess vascular damage. Both the vascular PpIX concentration and the vascular damage were highest for HAL, then ALA and then MAL. Vascular damage in MAL was not different from normal contralateral control skin. This pattern is consistent with literature data on vasoconstriction after PDT, and with the hypothesis that the vasculature plays a role in light fractionation that increases efficacy for HAL and ALA‐PDT but not for MAL. These findings indicate that endothelial cells of superficial blood vessels synthesize biologically relevant PpIX concentrations, leading to vascular damage. Such vascular effects are expected to influence the oxygenation of tissue after PDT which can be important for treatment efficacy.  相似文献   

16.
We have previously shown that light fractionation during topical aminolevulinic acid based photodynamic therapy (ALA-PDT) with a dark interval of 2h leads to a significant increase in efficacy in both pre-clinical and clinical PDT. However this fractionated illumination scheme required an extended overall treatment time. Therefore we investigated the relationship between the dark interval and PDT response with the aim of reducing the overall treatment time without reducing the efficacy. Five groups of mice were treated with ALA-PDT using a single light fraction or the two-fold illumination scheme with a dark interval of 30 min, 1, 1.5 and 2h. Protoporphyrin IX fluorescence kinetics were monitored during illumination. Visual skin response was monitored in the first seven days after PDT and assessed as PDT response. The PDT response decreases with decreasing length of the dark interval. Only the dark interval of 2h showed significantly more damage compared to all the other dark intervals investigated (P<0.05 compared to 1.5h and P<0.01 compared to 1h, 30 min and a single illumination). No relationship could be shown between the utilized PpIX fluorescence during the two-fold illumination and the PDT response. The rate of photobleaching was comparable for the first and the second light fraction and not dependent of the length of dark interval used. We conclude that in the skin of the hairless mouse the dark interval cannot be reduced below 2h without a significant reduction in PDT efficacy.  相似文献   

17.
Topical photodynamic therapy at low fluence rates--theory and practice   总被引:7,自引:0,他引:7  
Photodynamic Therapy (PDT), with topically applied 5-aminolaevulinic acid as the photosensitiser, is an effective treatment for various malignant and pre-malignant skin conditions. Several studies have shown the importance of fluence rate as well as fluence in the efficacy of PDT. We propose a measure of PDT efficacy, Photodynamic Damage Dose (PDD), which uses the product of instantaneous fluence rates, photosensitiser concentrations and oxygen concentrations in its calculation. We derive a qualitative numerical model of PDT and verify it by demonstrating an inverse fluence rate effect, increased efficacy of fractionated PDT, PDT induced hypoxia, and the dependence of photobleaching on fluence rate under certain circumstances. We recommend that fluence, fluence rate and any fractionation regime used should be detailed when reporting a trial as altering any of these has significant effects on PDT efficacy. The model predicts that low fluence rate irradiations should be as effective as high fluence rate irradiations if carried out over the same length of time. To test this we build a light emitting diode-based lamp (fluence rate of 7 mW cm(-2) at 635 nm) and used it to treat 32 superficial basal cell carcinomas on 22 patients (30 min treatment time, fluence 12.6 J cm(-2)). The complete response rate at one year was 84%, which is comparable to that achieved using higher fluence rate sources for similar treatment times. We conclude that this robust, inexpensive light source is effective for topical PDT.  相似文献   

18.
Photobleaching and phototransformation of protoporphyrin IX (PpIX) was investigated in normal mouse skin. The PpIX was induced by topical application of 5-aminolaevulinic acid (ALA). Exposure to laser light (635 nm) caused photobleaching of PpIX fluorescence and formation of fluorescent products. Analysis of the fluorescence spectra revealed appearance of new fluorescent photoproducts during light exposure. The main photoproduct, supposedly chlorin-type photoprotoporphyrin (PPp), exhibited fluorescence with an emission maximum at 675 nm. The other products exhibited main fluorescence peaks at around 588 and 623 nm that can presumably be attributed to an endogenous metallo-porphyrin and water-soluble porphyrin(s), respectively. Our results indicate that light exposure causes alterations in the enzymatic pathway of PpIX synthesis from ALA and leads to accumulation of intermediate water-soluble porphyrins. ALA-induced porphyrins are transported away from the treated area and partly deposited in remote skin sites.  相似文献   

19.
A fractionated illumination scheme in which a cumulative fluence of 100 J cm(-2) is delivered in two equal light fractions separated by a dark interval of 2 h has been shown to considerably increase the efficacy of 5-aminolevulinic acid (ALA)-photodynamic therapy (PDT). The efficacy of such a scheme is further increased if the fluence of the first light fraction is reduced to 5 J cm(-2). We have investigated the relationship between the PDT response and the kinetics of protoporphyrin IX (PpIX) fluorescence in the SKH1 HR hairless mouse for first fraction fluences below 5 J cm(-2) delivered 4 h after the application of ALA and 10 J cm(-2) delivered 2 h after the application of ALA. Illumination is performed using 514 nm at a fluence rate of 50 mW cm(-2). Reducing the fluence of the first fraction to 2.5 J cm(-2) does not result in significantly different visual skin damage. The PDT response, however, is significantly reduced if the fluence is lowered to 1 J cm(-2), but this illumination scheme (1 + 99 J cm(-2)) remains significantly more effective than a single illumination of 100 J cm(-2). A first light fraction of 10 J cm(-2) can be delivered 2 h earlier, 2 h after the application of ALA, without significant reduction in the PDT response compared with 5 + 95 J cm(-2) delivered 4 and 6 h after the application of ALA. The kinetics of PpIX fluorescence are consistent with those reported previously by us and do not explain the significant increase in PDT response with a two-fold illumination scheme. Histological sections of the illuminated volume showed a trend toward increasing extent and depth of necrosis for the two-fold illumination scheme in which the first light fraction is 5 J cm(-2), compared with a single illumination scheme.  相似文献   

20.
Few studies have been published to date measuring spatially resolved fluence rates in complex tissue geometries. Here the light distributions of three different intraperitoneal light delivery geometries in a murine ovarian cancer model were investigated to assess their influence on the tumorcidal efficacy of photodynamic therapy (PDT). In vivo fluence rate measurements in the peritoneal cavities of mice, with the light intensity being mapped in three transverse planes, were performed using fiber-optic detectors. Three different source fiber designs and placements were tested for their ability to provide uniform irradiation of the peritoneal cavity. The biological response to a PDT protocol comprising three separate treatments administered at 72 h intervals, each consisting of a 0.25 mg kg intraperitoneal injection of benzopor-phyrin derivative-mono acid ring A followed 90 min later by delivery of 15 J of 690 nm light, was measured. The tissue response was evaluated by measuring the number of remaining visible lesions and the total residual tumor mass. Fluence rate measurements showed large variations in the fluence rate distribution for similar intended treatments. The most uniform and reproducible illumination was achieved using two 18 mm long cylindrical emitting optical fibers. The biological response was comparable to that produced when a flat-cleaved end optical fiber is used to illuminate the four quadrants of the abdomen sequentially. While a good reproducibility in tumor induction in this animal model exists, no correlation was found between the fluence rate distribution measured in one group of animals and the biological response in a separate group of similarly treated animals. Due to the large intra-animal variability in fluence rate distribution, representative fluence rate mapping in complex tissue geometries is of limited value when applied to an individual PDT treatment. Thus, surveillance of the fluence rate during individual treatments will be required for acceptable PDT dosimetry. To improve the versatility of this particular animal model for PDT research, a large number of extended sources are required to increase uniformity of the illumination in order to reduce unwanted cytotoxic side effects resulting from foci of high fluence rates. In this way, subsequent increase of the total energy delivered to the tumor may be possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号