首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ubiquitin (Ub) carboxyl-terminal hydrolase L1 (UCH-L1) has dual functions, such as hydrolase activity on the chemical bonds formed by the C-terminal Gly of Ub and dimerization-dependent ubiquitin ligase activity. Accumulating evidence suggests that dual activities of UCH-L1 were intimately associated with Parkinson’s diseases (PD) and cancer. However, the molecular mechanism that regulates UCH-L1 enzymatic activity has not yet been fully elucidated. The serine protease high temperature requirement A2 (HtrA2), a PD-associated gene, is important in regulating cell survival as well as apoptosis. Using in vitro and in vivo cleavage assays, we have demonstrated that UCH-L1 is a natural substrate for the serine protease HtrA2 in the apoptotic pathway. Notably, we show that released, cytosolic HtrA2 decreases UCH-L1 protein level and its hydrolase activity through HtrA2-mediated cleavage of UCH-L1 under apoptotic conditions. These findings suggest that the HtrA2-mediated cleavage of UCH-L1 may play important roles in regulating the fine balance between cell growth and cell death.  相似文献   

2.
Despite the essential role of mitochondria in a variety of mammalian cell death processes, the involvement of mitochondrial pathway in Drosophila cell death has remained unclear. To address this, we cloned and characterized DmHtrA2, a Drosophila homolog of a mitochondrial serine protease HtrA2/Omi. We show that DmHtrA2 normally resides in mitochondria and is up-regulated by UV-irradiation. Upon receipt of apoptotic stimuli, DmHtrA2 is translocated to extramitochondrial compartment; however, unlike its mammalian counterpart, the extramitochondrial DmHtrA2 does not diffuse throughout the cytosol but stays near the mitochondria. RNAi-mediated knock-down of DmHtrA2 in larvae or adult flies results in a resistance to stress stimuli. DmHtrA2 specifically cleaves Drosophila inhibitor-of-apoptosis protein 1 (DIAP1), a cellular caspase inhibitor, and induces cell death both in vitro and in vivo as potent as other fly cell death proteins. Our observations suggest that DmHtrA2 promotes cell death through a cleavage of DIAP1 in the vicinity of mitochondria, which may represent a prototype of mitochondrial cell death pathway in evolution.  相似文献   

3.
The serine protease HtrA2 is important in regulating not only apoptosis but also cellular homeostasis. Recently, several lines of evidence suggest that HtrA2 may be intimately associated with Parkin; however, little is known about the functional relationships between HtrA2 and Parkin. Here we have shown that HtrA2 is co-localized with Parkin in the cytosol through the release of HtrA2 from the mitochondria upon cellular stresses. Moreover, endogenous levels of Parkin were significantly decreased in wild-type (HtrA2+/+) mouse embryonic fibroblasts (MEF) compared with those in HtrA2-knockout (HtrA2−/−) MEF under the same stress conditions. Using cleavage and binding assays, we have demonstrated that HtrA2 specifically binds to and directly cleaves the E3 ubiquitin (Ub) ligase Parkin. Interestingly, the HtrA2-mediated Parkin cleavage irreversibly disrupts Parkin-mediated synphilin-1 ubiquitination and autoubiquitination, indicating that HtrA2 may play a critical role in the Parkin-related pathway involved in the ubiquitin proteasome system.  相似文献   

4.
Mammalian serine protease HtrA2/Omi has been known as an apoptosis inducer involved inactivation of caspase-dependent as well as caspase-independent cell death. Recent studies with the HtrA2/Omi mutant and knockout mouse models, however, suggested that HtrA2/Omi might play a protective role in neurons. It is important to establish a transgenic mouse model with neuron-specific overexpression of HtrA2/Omi to clarify the physiological function of mammalian HtrA2/Omi in neurons. In the present study, a transgene containing HtrA2/Omi cDNA downstream of a rat neuron-specific enolase promoter was constructed and microinjected into the pronuclei of fertilized zygotes to establish transgenic mice. Transgenic mice successfully overexpressed HtrA2/Omi in brain tissue. As expected, HtrA2/Omi-overexpressing transgenic mice showed normal development without any sign of apoptotic cell death. Our results suggest that the primary function of neuronal HtrA2/Omi might be to protect neurons against stress in contrast to its role in the somatic system.  相似文献   

5.
HtrA2(Omi), belonging to the high-temperature requirement A (HtrA) family of stress proteins, is involved in the maintenance of mitochondrial homeostasis and in the stimulation of apoptosis, as well as in cancer and neurodegenerative disorders. The protein comprises a serine protease domain and a postsynaptic density of 95 kDa, disk large, and zonula occludens 1 (PDZ) regulatory domain and functions both as a protease and a chaperone. Based on the crystal structure of the HtrA2 inactive trimer, it has been proposed that PDZ domains restrict substrate access to the protease domain and that during protease activation there is a significant conformational change at the PDZ–protease interface, which removes the inhibitory effect of PDZ from the active site. The crystal structure of the HtrA2 active form is not available yet. HtrA2 activity markedly increases with temperature. To understand the molecular basis of this increase in activity, we monitored the temperature-induced structural changes using a set of single-Trp HtrA2 mutants with Trps located at the PDZ–protease interface. The accessibility of each Trp to aqueous medium was assessed by fluorescence quenching, and these results, in combination with mean fluorescence lifetimes and wavelength emission maxima, indicate that upon an increase in temperature the HtrA2 structure relaxes, the PDZ–protease interface becomes more exposed to the solvent, and significant conformational changes involving both domains occur at and above 30 °C. This conclusion correlates well with temperature-dependent changes of HtrA2 proteolytic activity and the effect of amino acid substitutions (V226K and R432L) located at the domain interface, on HtrA2 activity. Our results experimentally support the model of HtrA2 activation and provide an insight into the mechanism of temperature-induced changes in HtrA2 structure.

Electronic supplementary material

The online version of this article (doi:10.1007/s12192-012-0355-1) contains supplementary material, which is available to authorized users.  相似文献   

6.
Multicellular organisms have evolved elaborate signal transduction pathways for maintaining homeostasis through the control of cell proliferation and death. The recent surge of interest in the regulation of programmed cell death has led to the rapid identification of many proteins involved in controlling and executing apoptosis. The inhibitors of apoptosis proteins (IAPs) constitute a family of highly conserved death suppressing proteins that were first identified in baculoviruses, and that has recently expanded to include at least two homologues in Drosophila melanogaster and four in rodents and humans. In this article we review the current state of IAP research. Two of the IAPs, HIAP-1 and HIAP-2, have been placed within the TNFα induced cell death pathway which involves two receptors for TNFα and multiple, overlapping signal transduction proteins. A third, X-linked gene termed XIAP, is ubiquitously expressed and appears to have a broad range of suppressor activity to a variety of apoptotic triggers. The fourth member, NAIP, has been identified as the protein product of a candidate gene for the inherited neuromuscular disorder, spinal muscular atrophy (SMA). The neuroprotective activity of NAIP in an in vivo model of cerebral ischemia has also been demonstrated. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

7.
To elucidate mechanism of cell death in response to hypoxia, we attempted to compare hypoxia-induced cell death of HepG2 cells with cisplatin-induced cell death, which has been well characterized as a typical apoptosis. Cell death induced by hypoxia turned out to be different from cisplatin-mediated apoptosis in cell viability and cleavage patterns of caspases. Hypoxia-induced cell death was not associated with the activation of p53 while cisplatin-induced apoptosis is p53 dependent. In order to explain these differences, we tested involvement of μ-calpain and m-calpain in hypoxia-induced cell death. Calpains, especially μ-calpain, were initially cleaved by hypoxia, but not by cisplatin. Interestingly, the treatment of a calpain inhibitor restored PARP cleavage that was absent during hypoxia, indicating the recovery of activated caspase-3. The inhibition of calpains prevented proteolysis induced by hypoxia. In addition, hypoxia resulted in a necrosis-like morphology while cisplatin induced an apoptotic morphology. The calpain inhibitor prevented necrotic morphology induced by hypoxia and converted partially to apoptotic morphology with nuclear segmentation. Our result suggests that calpains are involved in hypoxia-induced cell death that is likely to be necrotic in nature and the inhibition of calpain switches hypoxia-induced cell death to apoptotic cell death without affecting cell viability.  相似文献   

8.
Zhang M  Liu H  Tian Z  Griffith BN  Ji M  Li QQ 《Life sciences》2007,80(8):767-774
The rate of gossypol-induced apoptosis does not correlate very well with the same dose of gossypol-induced cell growth inhibition, indicating an anti-proliferative effect of gossypol. Using a co-immunoprecipitation assay, it was observed that the level of Bcl-X(L) protein bound to Bax was clearly lower than that of Bcl-2 protein at 5 micro M of gossypol treatment, and the level of Bim protein bound to Bcl-X(L) was lowered at 20 micro M of gossypol treatment for 24 h, implicating that gossypol inhibits the heterodimerization of Bcl-X(L) with Bax and Bim. Gossypol-induced apoptosis is partly suppressed by as low as 0.5 micro M, but not abolished by as high as 50 micro M of a broad range caspase inhibitor, Z-VAD-FMK, suggesting that gossypol-induced apoptosis is both caspase-dependent and -independent. Furthermore, the release of apoptosis inducing factor (AIF), which triggers caspase-independent apoptosis, from mitochondria to cytosol was observed in PC-3 cells exposed to gossypol treatment. In conclusion, gossypol inhibits the proliferation and induces apoptosis in PC-3 cells. Gossypol-induced apoptosis is, at least, through inhibiting the heterodimerization of Bcl-X(L)/Bcl-2 with pro-apoptosis molecules, followed by a caspase-dependent and -independent process which involves the release of AIF from the mitochondria to cytosol.  相似文献   

9.
HtrA2 belongs to the HtrA (high temperature requirement A) family of ATP-independent serine proteases. The primary function of HtrA2 includes maintaining the mitochondria homeostasis, cell death (by apoptosis, necrosis, or anoikis), and contribution to the cell signaling. Several recent reports have shown involvement of HtrA2 in development of cancer and neurodegenerative disorders. Here, we describe the profiling of HtrA2 protease substrate specificity via the combinatorial chemistry approach that led to the selection of novel intramolecularly quenched substrates. For all synthesized compounds, the highest HtrA2-mediated hydrolysis efficiency and selectivity among tested HtrA family members was observed for ABZ-Ile-Met-Thr-Abu-Tyr-Met-Phe-Tyr(3-NO2)-NH2, which displayed a specificity constant kcat/KM value of 14,535 M−1 s−1.  相似文献   

10.
Repeated ligation of the TCR results in apoptosis (activation-induced cell death; AICD). Superantigens such as Staphylococcal enterotoxin B (SEB) are particularly efficient at inducing AICD in T cells. We investigated whether apoptosis in human T cell subsets was due to fratricide (killing of neighboring cells) or suicide (cell autonomous death). AICD of Th1, Th2, Tc1, and Tc2 effector cells was dramatically enhanced at low cell densities and could be observed in single cell microcultures. AICD was unaffected by adhesion molecules or neighboring cells undergoing AICD, confirming the predominance of a suicidal mechanism. However, SEB was able to induce fratricidal apoptosis of type 1, but not type 2 cells. Fratricide was also observed when unstimulated T cells were exposed to activated Tc1 effector cells. Thus, AICD is tightly regulated to allow clonal T cell expansion and memory cell generation, but superantigens may subvert this process by allowing T cell fratricide.  相似文献   

11.
Human HtrA2 belongs to a new class of oligomeric serine protease, members of which are found in most organisms. Mature HtrA2 is released from mitochondria into the cytosol in response to apoptotic stimuli. In this report, the effect of temperature on proteolytic activity of HtrA2 and related structural properties were investigated. In the range from 25 to 55 degrees C, the proteolytic activity of HtrA2 rapidly increased with temperature, and it drastically decreased at and over 60 degrees C. Structural analysis using far-UV CD spectroscopy and gel filtration revealed no significant change in the secondary structure of HtrA2 from 25 to 70 degrees C, or in the oligomeric size between 25 and 55 degrees C. However, a significant change at the tertiary level, as examined using near-UV CD, was observed for HtrA2 in the range from 25 to 60 degrees C. Differential scanning calorimetry indicated that HtrA2 exhibits a thermal transition beginning at around 61 degrees C. The fluorescence intensity of ANS interacting with HtrA2 decreased with increasing temperature. HtrA2 was found to be able to complement DegP function at 44 degrees C, indicating that HtrA2 could have protective functions in mitochondria.  相似文献   

12.
  1. Download : Download high-res image (244KB)
  2. Download : Download full-size image
  相似文献   

13.
Loss of the mitochondrial protease HtrA2 (Omi) in mice leads to mitochondrial dysfunction, neurodegeneration and premature death, but the mechanism underlying this pathology remains unclear. Using primary cultures from wild-type and HtrA2-knockout mice, we find that HtrA2 deficiency significantly reduces mitochondrial membrane potential in a range of cell types. This depolarisation was found to result from mitochondrial uncoupling, as mitochondrial respiration was increased in HtrA2-deficient cells and respiratory control ratio was dramatically reduced. HtrA2-knockout cells exhibit increased proton translocation through the ATP synthase, in combination with decreased ATP production and truncation of the F1 α-subunit, suggesting the ATP synthase as the source of the proton leak. Uncoupling in the HtrA2-deficient mice is accompanied by altered breathing pattern and, on a cellular level, ATP depletion and vulnerability to chemical ischaemia. We propose that this vulnerability may ultimately cause the neurodegeneration observed in these mice.  相似文献   

14.
15.
The role of the serine protease HtrA2 in neuroprotection was initially identified by the demonstration of neurodegeneration in mice lacking HtrA2 expression or function, and the interesting finding that mutations adjacent to two putative phosphorylation sites (S142 and S400) have been found in Parkinson's disease patients. However, the mechanism of this neuroprotection and the signalling pathways associated with it remain mostly unknown. Here we report that cyclin-dependent kinase-5 (Cdk5), a kinase implicated in the pathogenesis of several neurodegenerative diseases, is responsible for phosphorylating HtrA2 at S400. HtrA2 and Cdk5 interact in human and mouse cell lines and brain, and Cdk5 phosphorylates S400 on HtrA2 in a p38-dependent manner. Phosphorylation of HtrA2 at S400 is involved in maintaining mitochondrial membrane potential under stress conditions and is important for mitochondrial function, conferring cells protection against cellular stress.  相似文献   

16.
ALG-2 (apoptosis-linked gene-2 encoded protein) has been shown to be upregulated in a variety of human tumors questioning its previously assumed pro-apoptotic function. The aim of the present study was to obtain insights into the role of ALG-2 in human cancer cells. We show that ALG-2 downregulation induces accumulation of HeLa cells in the G2/M cell cycle phase and increases the amount of early apoptotic and dead cells. Caspase inhibition by the pan-caspase inhibitor zVAD-fmk attenuated the increase in the amount of dead cells following ALG-2 downregulation. Thus, our results indicate that ALG-2 has an anti-apoptotic function in HeLa cells by facilitating the passage through checkpoints in the G2/M cell cycle phase.  相似文献   

17.
The subunit S5a is a key component for the recruitment of ubiquitinated substrates to the 26S proteasome. When the full-length S5a, the N-terminal half of S5a (S5aN) containing the von Willebrand A (vWA) domain, and the C-terminal half of S5a (S5aC) containing two ubiquitin(Ub)-interacting motifs (UIMs) were ectopically expressed in HEK293 cells, Ub-conjugates accumulated most prominently in S5aC-expressing cells. In addition, S5aC induced A549 lung cancer cell death but not non-cancer BEAS-2B cell death. Similar effects were observed using only S5a-UIMs. Our data therefore suggest that S5a-UIMs can be used as upstream inhibitors of the proteasome pathway.  相似文献   

18.
Oligochitosan has been proved to trigger plant cell death. To gain some insights into the mechanisms of oligochitosan-induced cell death, the nature of oligochitosan-induced cell death and the role of calcium (Ca2+), nitric oxide (NO) and hydrogen peroxide (H2O2) were studied in tobacco suspension cells. Oligochitosan-induced cell death occurred in cytoplasmic shrinkage, phosphatidylserine externalization, chromatin condensation, TUNEL-positive nuclei, cytochrome c release and induction of programmed cell death (PCD)-related gene hsr203J, suggesting the activation of PCD pathway. Pretreatment cells with cyclosporin A, resulted in reducing oligochitosan-induced cytochrome c release and cell death, indicating oligochitosan-induced PCD was mediated by cytochrome c. In the early stage, cells undergoing PCD showed an immediate burst in free cytosolic Ca2+ ([Ca2+]cyt) elevation, NO and H2O2 production. Further study showed that these three signals were involved in oligochitosan-induced PCD, while Ca2+ and NO played a negative role in this process by modulating cytochrome c release.  相似文献   

19.
A novel population-balance model was employed to evaluate the suppression of cell death in myeloma NS0 6A1 cells metabolically engineered to over-express the apoptotic suppressor Bcl-2. The model is robust in its ability to simulate cell population dynamics in batch suspension culture and in response to thymidine-induced growth inhibition: 89% of simulated cell concentrations are within two standard deviations of experimental data. Kinetic rate constants in model equations suggest that Bcl-2 over-expression extends culture longevity from 6 days to at least 15 days by suppressing the specific rate of early apoptotic cell formation by more than 6-fold and necrotic cell formation by at least 3-fold, despite nearly a 3-fold decrease in initial cell growth rate and no significant change in the specific rate of late apoptotic cell formation. This computational analysis supports a mechanism in which Bcl-2 is a common mediator of early apoptotic and necrotic events occurring at rates that are dependent on cellular factors accumulating over time. The model has current application to the rational design of cell cultures through metabolic engineering for the industrial production of biopharmaceuticals.  相似文献   

20.
Achacin, which belongs to the L-amino acid oxidase group, oxidizes free amino acids and produces hydrogen peroxide in cell culture systems. Morphological changes in cells incubated with achacin were similar to those of cells incubated with H(2)O(2). In both cases, the end result was cell death. To examine the mechanism of achacin-associated cytotoxicity, the H(2)O(2) scavenger catalase was added to culture media. Features typical of apoptosis, including morphological changes, DNA fragmentation, and PARP cleavage, were observed when cells were incubated with achacin in the presence of catalase. Moreover, apoptosis was inhibited by Z-VAD-fmk, a broad-spectrum caspase inhibitor. Herein, we present evidence that two pathways are involved in achacin-induced cell death. One is direct generation of H(2)O(2) through the L-amino acid oxidase activity of achacin. The other is the caspase-mediated apoptotic pathway that is induced by depletion of L-amino acids by achacin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号