首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
晋东南-荆门特高压线路保护浅析   总被引:1,自引:0,他引:1  
介绍了晋东南-南阳-荆门特高压交流1000kV试验示范工程的线路、变压器、电抗器、断路器等保护的配置情况,重点分析了特高压线路保护联跳三相新功能的技术要求和厂家实现该功能的保护逻辑,论述了采用纵联标识码后光纤差动保护和光纤纵联距离保护在通道自环、同步采样、通讯时钟等通讯方式的设定方法,简要介绍了特高压经高阻接地故障的新特点,并对比分析了南瑞继保和四方线路保护实现上述功能的异同和有别于超高压线路保护的特点.  相似文献   

2.
纵差保护作为高压直流线路后备保护,需设置较长延时躲过区外故障时分布电容电流的影响。为提高纵联保护性能,提出一种基于反行波差值的纵联保护原理。区内故障时,远离故障侧的反行波与近故障侧的前行波不满足线路的传输函数;区外故障时,远离故障侧的反行波与近故障侧的前行波满足线路的传输函数。因此根据传输函数与近故障侧前行波计算远故障侧反行波,并将计算所得的反行波与实际反行波比较,识别区内、外故障。在PSCAD/EMTDC中对所提方案进行了验证,仿真结果表明,不同故障情况下保护方案均能快速、可靠地识别故障,并具有良好的耐受高阻能力。  相似文献   

3.
随着光纤等数字通道在高压输电线路保护中的逐渐推广应用,充分利用数字通道来完善成套保护的原理就显得尤为重要。从距离保护的振荡闭锁、非全相识别、高频保护、自动重合闸、实测线路参数等几个方面提出改进保护性能的措施,并提出保护原理进一步改进的可能性及方向。  相似文献   

4.
随着光纤等数字通道在高压输电线路保护中的逐渐推广应用,充分利用数字通道来完善成套保护的原理就显得尤为重要.从距离保护的振荡闭锁、非全相识别、高频保护、自动重合闸、实测线路参数等几个方面提出改进保护性能的措施,并提出保护原理进一步改进的可能性及方向.  相似文献   

5.
6.
分析华东电网近期的2次高阻接地故障,指出阻抗型继电器的局限性,认为四边形特性阻抗继电器由于受对侧助增的影响,实际躲过渡电阻能力较预想的弱;分相电流差动保护灵敏性远高于纵联阻抗保护以及零序电流保护在系统中的不可替代性.  相似文献   

7.
特高压输电线路负序方向纵联保护   总被引:2,自引:1,他引:1  
采用数字式二阶RC低通滤波器和半波差分傅里叶算法,结合相序变换滤取负序分量,可在微机保护中实现负序方向元件,并可在故障初几毫秒内正确动作。用该方法实现的负序方向元件可正确及时地捕捉到由不对称故障发展起来的三相短路故障瞬间的不对称,故可以反映各种不对称故障和由不对称故障发展起来的三相故障。仿真试验验证了用所提出的方法实现的负序方向元件用于特高压输电线路的可行性和优越性。  相似文献   

8.
《电网技术》2006,30(17):96-96
1000kV晋东南-南阳-荆门特高压交流试验示范工程包括三站两线,起于山西省长治市境内的晋东南变电站,经河南省南阳市境内的南阳开关站,止于湖北省荆门市境内的荆门变电站,线路全长约653.8km。工程可行性研究报告估算静态投资约为58亿元(2004年价格水平),动态总投资约为60亿元。  相似文献   

9.
牟大林  林圣  李小鹏 《电网技术》2024,(5):2170-2178
为探究现有高压直流输电线路纵联差动保护对混合级联特高压直流输电系统的适应性,结合混合级联特高压直流输电系统的运行方式,理论分析和仿真分析3种特殊运行方式下直流系统不同位置故障的故障特性和保护适应性。理论分析发现纵联差动保护适应性较好。仿真分析发现直流线路分布电容和逆变侧模块化多电平型换流器(modular multilevel converter,MMC)控制特性影响在直流线路故障时直流线路电流延时自减值长时间处于波动状态,导致纵联差动保护长时间处于闭锁状态,此时,系统长时间承受MMC超大故障电流冲击。直流线路区外故障时整流侧与逆变侧直流电流差值的绝对值数值较大且长时间处于波动变化状态,纵联差动保护存在误动的风险。  相似文献   

10.
介绍超高压线路纵联保护在实际系统运行中常出现的问题,结合RCS-931纵联保护装置问题的解决方法进行了分析和讨论.对RCS-931的调试遇到的问题谈了认识,并对特高压线路纵联保护中出现的特殊问题进行了探讨.  相似文献   

11.
特高压输电线路保护的方案研究——纵联差动保护   总被引:2,自引:1,他引:2       下载免费PDF全文
根据特高压输电线路结构和运行特点,通过建立750kV特高压输电线路的RTDS实时数据仿真系统数学模型进行仿真,结合仿真数据介绍750kV输电系统的电气特征,着重分析了线路的电容电流、谐波分量、非周期分量等对分相电流差动保护的影响,并针对问题提出具体的对策,仿真测试结果表明,该文提出的差动保护方案解决了750kV特高压输电线路系统对差动保护影响,同时简要介绍了光纤差动保护的整体配置及实现方案。  相似文献   

12.
采用ATP软件建立了超高压长线模型 ,分析了超高压长线各种故障情况下 ,分布电容对分相电流差动的影响 ,并对比了采用电容电流补偿和不采用电容电流补偿的相量差动与故障分量差动原理的动作情况。仿真结果表明 ,分相电流差动在原理上完全适用于超高压长输电线路的保护 ,在各种运行工况下 ,采用电容电流补偿可以有效提高差动保护的可靠性和灵敏度 ,在同一工况下 ,故障分量差动比相量差动有更好的选择性  相似文献   

13.
特高压输电线分相电流相位差动保护的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对传统相位差动纵联保护反应各种故障的灵敏度不同的缺点以及特高压输电线路的分布电容较大等特点,提出了基于贝瑞隆模型实现特高压输电线路分相相位差动纵联保护的新原理。介绍了利用贝瑞隆模型计算输电线路故障的方法,推导了实现分相相位差动纵联保护的判据及闭锁角的整定原则,综合分析了各种故障状态下保护的动作情况,解决了各种故障下的故障判别以及特高压线路上的大电容电流影响等问题。提出了用于故障后1~2个周波的基于电流故障分量的分相相位差动保护新原理,大大提高了保护承受过渡电阻的能力和动作速度。用ATP和Matlab仿真证明了该原理的正确性和用于特高压输电线的优越性。  相似文献   

14.
通过对一起线路高阻接地故障时电流差动保护拒动的分析,得出是由于弱故障侧电流启动元件灵敏度不足使得线路两侧差动保护启动元件没有同时动作的原因。因此提出了一种改进的电流差动保护双端零序电流电压辅助启动方法。改进后的辅助启动元件借助线路两侧电流或电压中的故障分量信息,提高了弱故障侧电流差动保护启动性能。现场故障录波数据回放以及RTDS仿真结果显示,改进后的电流差动保护在高阻接地故障,尤其是对于在靠近线路一侧故障而远故障侧仅感受到很小的故障量时,动作性能有明显提升。  相似文献   

15.
基于1 000 kV双端电源输电线路模型,利用EMTP仿真计算加装HSGS前后潜供电流的变化情况。研究表明,采用HSGS限制潜供电流的方法适用于较短的、不需要高抗补偿和换位的线路,一般要求200 km以内。HSGS的接地电阻对HSGS限制潜供电流效果的影响很大,应该小于0.5 Ω。并分析了HSGS的接地电阻大于1.5 Ω时,150 km线路两端的潜供电流比加装前大的现象。对不同长度的装有HSGS的线路分别仿真可知,线路越长,潜供电流和恢复电压的值越大。  相似文献   

16.
从磁链变化角度分析特高压换流变压器(简称换流变)阀侧发生单相接地故障时由换流阀单向导通性引起的励磁涌流(定义为故障性涌流)的产生机理和变化特点。以特高压直流输电系统中某一换流变为例,分析故障性涌流对换流变差动保护动作特性的影响。研究结果表明,故障性涌流容易导致换流变区外故障转区内时差动保护误闭锁。针对该问题,进一步分析发现,由于换流阀的单向导通性使得转换性故障发生后差动电流的直流分量存在由负极性到正极性反转的特征,进而利用该特征提出换流变差动保护闭锁逻辑改进判据。仿真结果证明了所提判据的可靠性。  相似文献   

17.
为研究人工水平接地体对特高压杆塔基础接地电阻及散流的影响,在CDEGS软件中建立了典型特高压杆塔基础及人工水平接地体仿真计算模型,分别对不同根数水平接地体、不同水平接地体长度、不同土壤电阻率的降阻率及散流比进行仿真计算.计算结果表明:水平接地体对特高压杆塔基础接地电阻减小效果并不十分明显,特高压杆塔接地应充分利用其自然接地体作用.另对3种典型特高压杆塔基础接地体电流密度分布进行计算,计算结果表明,单桩垂直型接地体有最大电流密度.当入地电流为10A时,非底段的最大电流密度为1.156A/m.  相似文献   

18.
分析了线路电流差动保护中两端各补偿一半电容电流的传统补偿方法,指出该方法在区内故障时存在受故障点影响补偿不精确、降低灵敏度的缺点。提出了一种自适应电容电流补偿方法,在保证相同的区外故障可靠性基础上,大大提高了区内故障的灵敏度。对一条1000 kV线路故障和电流差动保护进行了仿真试验,证明该自适应补偿方法的有效性和正确性,适合作为特高压输电线路电流差动保护电容电流补偿方法。  相似文献   

19.
非全相运行对方向高频保护的影响   总被引:1,自引:0,他引:1  
林峻嵩 《广东电力》2001,14(2):16-18,53
对高压线路非全相运行中高频保护的零序功率方向元件和突变量方向元件动作性进行分析,并通过对一起220kV线路保护误动事故实例的分析,指出在非全相运行中方向高频保护应注意的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号