首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The structure and magnetic phase transitions of the Gd2Fe17 compound are investigated by using a differential thermal/thermogravimetric analyzer, x-ray diffraction, and magnetization measurements. The result shows that there are two phase structures for the Gd2Fe17 compound: the hexagonal Th2Nilr-type structure at high temperatures (above 1243℃), and the rhombohedral Th2Zn17-type structure, respectively. A method to measure the magnetic moments of the Gd-sublattice and the Fe-sublattice in the Gd2Fe17 compound is presented. The moments of the Gd-sublattice and the Fe-sublattice in the Gd2Fe17 compound from 77 to 500 K are measured in this way with a vibrating sample magnetometer. A detailed discussion is presented.  相似文献   

2.
We have measured positive exchange bias in a Ni80Fe20/NixFe1−xO thin-film nanocrystallite system. A series of solid solution NixFe1−xO 40 nm thick films capped with 25 nm thick Ni80Fe20 were deposited using a range of %O2/Ar bombardment energies (i.e. End-Hall voltages). Proper tuning of the deposition conditions results in a Ni80Fe20/NixFe1−xO (30%O2/Ar) based bilayer that exhibits a positive exchange bias loop shift of Hex∼60 Oe at 150 K.  相似文献   

3.
The magnetization reversal of the bilayer polycrystalline FeNi(50 Å)/FeMn(50 Å) film sputtered in a magnetic field has been studied by magnetic and magneto-optical techniques. The external magnetic fields were applied along the easy or hard magnetization axis of the ferromagnetic permalloy layer. The asymmetry of hysteresis loop has been found. Appreciable asymmetry and the exchange bias were observed only in the field applied along the easy axis. The specific features of magnetization reversal were explained within the phenomenological model that involves high-order exchange anisotropy and misalignment of the easy axes of the antiferromagnetic and ferromagnetic layers. It has been shown that the film can exist in one of three equilibrium magnetic states in the field applied along the easy axis. The transitions between these states occur as first-order phase transitions. The observed hysteresis loop asymmetry is related to the existence of the metastable state.  相似文献   

4.
Comparative crystal structure and magnetic properties studies have been conducted on quaternary powder spinel samples LiMn1.82Cr0.18O4 obtained by two different synthesis methods, glycine-nitrate (GN) and ultrasonic spray-pyrolysis (SP). Although both samples possess the same spinel structure of the cubic space group Fd3¯m, their low-temperature magnetic properties display significant differences. While the SP sample undergoes only spin-glass transition at the freezing temperature Tf=20 K, the GN sample possesses more complicated low-temperature magnetic behavior of the reentrant spin-glass type with the Néel temperature TN=42 K and freezing temperature Tf=22 K. High-temperature magnetic susceptibility of both samples is of the Curie–Weiss type with the effective magnetic moments in agreement with the nominal compositions. This fact together with the results of the chemical analysis discards the existence of the diversity in chemical compositions as a possible cause for the observed differences in the low-temperature magnetism. On the other hand, the crystal structure analysis done by the Rietveld refinement of the X-ray powder diffraction data points to the strong influence of the cation distribution on the ground-state magnetism of these systems. An explanation of this influence is proposed within the framework of a collective Jahn–Teller effect.  相似文献   

5.
The properties of antiferromagnetic (AFM)–ferromagnetic (FM) bilayer have been studied using self-consistent mean-field approximation for Heisenberg Hamiltonian. The perpendicular exchange coupling has been revealed in a bilayer with a compensated interface. For a uniform AFM film a symmetrical hysteresis loop has been calculated, because the transverse instability develops within the AFM film at certain critical value of external magnetic field. On the other hand, shifted hysteresis loop with a finite exchange bias field has been obtained for a non-uniform AFM film consisting of various AFM domains with perpendicular directions of the easy anisotropy axes.  相似文献   

6.
Ni-ferrite (NiFe2O4) nanoparticles have been synthesized via a solid state reaction process. Ni and Fe bi-metallic nanoparticles in the form of Ni33Fe67 alloy nanopowder are first synthesized by simultaneous evaporation of the required amounts of pure Ni and Fe metals followed by rapid condensation of the evaporated metal flux into solid state by means of an inert gas, helium, using the process of inert gas condensation (IGC). In order to form the NiFe2O4 structure, as-synthesized samples (Ni33Fe67) are annealed for 12 h in ambient conditions at different annealing temperatures. Structural analyses show that NiFe2O4 starts to form at around 450 °C and gets progressively well defined with increasing annealing temperatures yielding particle with size ranging between 15 and 50 nm. Besides successfully forming NiFe2O4, NiO/Fe3O4 core/shell nanoparticles have also been synthesized by adjusting the annealing conditions. Three different structures, Ni33Fe67, NiO/Fe3O4, and NiFe2O4, obtained in this study are compared with respect to their structural and magnetic properties.  相似文献   

7.
8.
We propose a method for determination of the distribution function P(j) of the coupling energy density j in polycrystalline textured ferromagnetic (F)/antiferromagnetic (AF) film systems. P(j) governs the entire film coupling J and the exchange bias field He and was not measurable until now. The method is verified by torquemetry in a high magnetic field and by reversing its rotation sense. The transition to a new magnetic steady state after rotation reversal is analyzed within a Stoner–Wohlfarth model including thermal relaxation. This transition is completed earlier for strongly coupled grains than for grains with smaller j, which is reflected in the torque curves. We determined P(j) for a sputtered NiFe(16 nm)/IrMn(0.8 nm) film at T=50 K in the hysteretic range of coupling energies and found that P strongly decreases for increasing j.  相似文献   

9.
Glass-ceramics have been derived from 4.5MgO(45−x)CaO34SiO216P2O50.5CaF2xFe2O3 (x=5, 10, 15, 20 wt%) glasses by heat treatment. Room temperature electron paramagnetic resonance (EPR) spectra and temperature-dependent magnetic susceptibility (χ) of the glass-ceramics have been obtained. The EPR absorption line centered at g≈4.3 disappeared at higher concentrations of iron oxide. The intensity and line width of the EPR absorption line centered at g≈2.1 increased as the iron oxide concentration was increased. Temperature-dependent magnetization of samples with low iron oxide content revealed ferrimagnetic as well as paramagnetic contributions. Information about the structural changes involving iron ions, their valence state and the type of magnetic interactions between the Fe ions as a function of composition was obtained using EPR and χ studies.  相似文献   

10.
Electronic and magnetic structures of ferromagnetic (FM)/antiferromagnetic (AFM), Ni/FeF2(1 1 0), with a compensated AFM interface are investigated by using the full-potential linearized augmented plane-wave method. We find that magnetic structures at the AFM interface are perturbed by a contact with the FM material, where the superexchange interaction through the interface F excites and induces a small net moment at the AFM interface. These results predicted may play an important role for explaining the exchange bias in this system, and rule out the exchange bias mechanisms with the spin-flop coupling and the magnetic moment reorientation.  相似文献   

11.
Magnetic properties of core–shell cobalt ferrite nanoparticles prepared by co-precipitation route in the range 15–48 nm have been studied. It is shown that the coercivity follows non-monotonic size dependence and exhibits a peak at around 26 nm. Field-cooled magnetization exhibited both horizontal (exchange bias) and vertical shifts. The exchange bias is understood as originating at the interface between a surface region (with structural and spin disorder) and a core ferrimagnetic region. The dependence of the exchange bias and vertical shift on the particle size and cooling field is found to have significant differences. These differences are explained in the light of recent results that suggest that there is a variation of the pinning strength amongst the interface spins and the vertical shift is affected by the more strongly pinned uncompensated spins.  相似文献   

12.
In order to study the mechanism behind the phase separation scenario in the Sm0.15Ca0.85MnO3 compound, magnetization and resistivity measurements have been carried out in pulsed magnetic fields up to 50 T at temperatures 4.2 K<T<200 K. It is found that external magnetic field causes a collapse of a C-type AFM (P21/m) phase resulting in field-induced insulator-metal transition, which is irreversible below T1=75 K. In zero field the content of a G-type phase in the mixed C-G state can vary from 10 to 17% at T=10 K. A set of metastable states with different volume ratios of G-type to C-type phases is observed below T1 depending on the history of the sample. The obtained results indicate that the phase separation plays a dominant role for the electric and the magnetic properties of this material.  相似文献   

13.
Effects of Mn substitution for Co and Fe on the structural and magnetic properties of inverse-spinel CoFe2O4 have been investigated. MnxCo1−xFe2O4 and MnyCoFe2−yO4 thin films were prepared by a sol–gel method. The observed increase of the lattice constant of MnxCo1−xFe2O4 indicates that Mn2+ ions substitute the octahedral Co2+ sites. Conversion electron Mössbauer spectroscopy data indicate that a fraction of octahedral Co2+ ions exchange sites with tetrahedral Fe3+ ions through Mn doping. Vibrating-sample magnetometry data exhibit a large increase of saturation magnetization for both MnxCo1−xFe2O4 and MnyCoFe2−yO4 films compared to that of the CoFe2O4 film. Such enhancement of magnetization can be explained in terms of a breaking of ferrimagnetic order induced by the Co2+ migration.  相似文献   

14.
The exchange interactions and the magnetic exchange energies are calculated by using the mean field theory and the probability law of Zn1−xMnxCr2O4 nanoparticles. The high-temperature series expansions have been applied in the spinels Zn1−xMnxCr2O4 systems, combined with the Padé approximants method, to determine the magnetic phase diagram, i.e. TC versus dilution x. The critical exponent associated with the magnetic susceptibility (γ) is deduced. The obtained value of γ is insensitive to the dilution ratio x and may be compared with other theoretical results based on the 3D Heisenberg model.  相似文献   

15.
In this paper we report a systematic study of Mn-site substitution by M=Co, Cr and Al in La0.85Ag0.15MnO3 series to understand the magnetic interactions between Mn and other transition metals. The long-range ferromagnetic (FM) ordering of the parent compound was significantly affected by Mn-site substitution. The measured magnetic properties of Co-doped samples have been explained on the basis of FM interactions in Mn3+-O-Mn4+, Co2+-O-Mn4+, Co3+-O-Mn4+ networks and simultaneous antiferromagnetic (AFM) interactions in Mn4+-O-Mn4+, Co2+-O-Mn3+ networks. The magnetic properties of Cr-doped compounds could be understood on the basis of double exchange FM interactions in Mn3+-O2−-Mn4+ networks and competing AFM in Cr3+-O-Mn4+, Mn4+-O-Mn4+, Cr3+-O-Mn3+ networks. However, it is found that the doping of Al ions play a role of magnetic dilution, without contributing any other competing magnetic interaction. The field variations of magnetization of all the above three series could be analysed by fitting to Brillouin function model and the effective spin contribution for FM has been determined. The measured saturation magnetization has been explained quantitatively.  相似文献   

16.
A TbFeCo film was deposited by DC magnetron sputtering and studied by transmission electron microscopy, polar and longitudinal magneto-optical Kerr effect, and magnetometry measurements. Transmission electron microscopy has shown the existence of lateral compositional inhomogeneity. Magneto-optical measurements have shown that the initial layer at the bottom consists of only magnetic perpendicular component and the top surface layer has a compositional inhomogeneity and consists of in-plane components and perpendicular one. The perpendicular components in the bottom and the surface layers have identical composition. Two in-plane components have been shown by magnetometry measurements. It is shown that phase segregation exists in the TbFeCo film and possible form of compositional inhomogeneity has been discussed. The two in-plane components are exchange coupled with a magnetization off-alignment of 35°. For the soft in-plane component, the in-plane and out-of-plane angular dependence of the exchange biasing is similar to those of the conventional one. Within temperatures from 100 to 300 K, the exchange field and the coercivity are both linear functions of temperature.  相似文献   

17.
The nanocrystalline Ni0.53Cu0.12Zn0.35Fe1.88O4 and BaTiO3 powders were prepared using Microwave-Hydrothermal (M-H) method at 160 °C/45 min. The as synthesized powders were characterized using the X-ray diffraction (XRD) and Transmission Electron Microscope (TEM). The size of the powders that were synthesized using M-H system was found to be ∼30 and ∼50 nm for ferrite phase and ferroelectric phases, respectively. The powders were densified using microwave sintering method at 900 °C/30 min. The ferrite and ferroelectric phases were observed from XRD and morphology of the composites was observed with the Scanning Electron Microscope (SEM).The magnetic hysteresis loops were recorded using the Vibrating Sample Magnetometer (VSM).The frequency dependence of real (μ′) and imaginary (μ″) parts of permeability was measured in the range of 1 MHz-1.8 GHz. The permeability decreases with an increase of BaTiO3 content at 1 MHz. The transition temperature (TC) of ferrite was found to be 245 °C. The TC of composite materials decreases with an increase in BaTiO3 content.  相似文献   

18.
The phenomenon of giant intrinsic magnetic hardness is investigated in compounds R1−x Sm x Co2Ni3 with R=Y, Pr, Gd, Tb, Er. Partial Er substitution for Sm actually increases magnetic hardness while all other substitutions decrease magnetic hardness. The strength of coercivity is thus dependent on both the sign and magnitude of the crystal field interaction. The temperature dependence of coercivity is complex in the case of Pr substitution as a result of competing effects from thermal activation and a decrease in anisotropy at low temperatures. This study has been supported by a grant from the National Science Foundation.  相似文献   

19.
The structure and magnetic properties of Y2Fe14Al3 compound are investigated by means of x-ray diffraction and magnetization measurements. The Y2Fe14Al3 compound has a hexagonal Th2Ni17-type structure. Negative thermal expansion is found in Y2Fe14Al3 compound in the temperature range from 403 to 491K by x-ray dilatometry. The coefficient of the average thermal expansion is α^- = -2.54Х 10^-5 K^-1. The spontaneous magnetostrictive deformations from 283 to 470 K are caJculated by means of the differences between the experimental values of the lattice parameters and the corresponding values extrapolated from the paramagnetic range. The result shows that the spontaneous volume magnetostrictive deformation ωs decreases from 5.74 × 10^-3 to nearly zero with temperature increasing from 283 to 470K, the spontaneous linear magnetostrictive deformation λc along the c-axis is larger than the spontaneous linear magnetostrictive deformation λa in basal-plane in the same temperature below 350 K.  相似文献   

20.
In Yb3Fe5O12, the exchange effective field can be expressed as Heff=−λ·MFe=−λχeff·He=−γ·He where γ is named as the exchange field parameter and He is the external magnetic field. Then, in this paper, by the discussions on the characteristics of the exchange field parameter γ, the properties of exchange interaction in ytterbium iron garnet (Yb3Fe5O12) are analyzed under extreme conditions (high magnetic fields and low temperatures). Our theory suggests that the exchange field parameter γ is the function of the temperatures under different external magnetic fields, and γ=a+b·T+c·T2, where the coefficients a, b, c are associated with the external magnetic fields and the magnetized directions. Thus, the temperature-dependence, field-dependence and anisotropic characteristics of the exchange interaction in Yb3Fe5O12 are revealed. Also, excellent fits to the available experiments are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号