首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Let Ω be a bounded open domain in R n , gRR a non-decreasing continuous function such that g(0)=0 and h ε L loc 1 (R+; L 2(Ω)). Under suitable assumptions on g and h, the rate of decay of the difference of two solutions is studied for some abstract evolution equations of the general form u ′′ + Lu + g(u ) = h(t,x) as t → + ∞. The results, obtained by use of differential inequalities, can be applied to the case of the semilinear wave equation $$u_u - \Delta u + g{\text{(}}u_t {\text{) = }}h{\text{ in }}R^ + \times \Omega ,{\text{ }}u = {\text{0 on }}R^ + \times \partial \Omega$$ in R +×Ω, u=0 on R +×?Ω. For instance if \(g(s) = c\left| s \right|^{p - 1} s + d\left| s \right|^{q - 1} s\) with c, d>0 and 1 < p≦q, (n?2)q≦n+2, then if \(h \in L^\infty (R + ;L^2 (\Omega ))\) , all solutions are bounded in the energy space for t≧0 and if u, v are two such solutions, the energy norm of u(t) ? v(t) decays like t ?1/p?1 as t → + ∞.  相似文献   

2.
3.
4.
Ho & Meyer [1] have sketched an argument for arriving at asymptotic properties of solutions of a pair of non-linear conservation laws with floating, shocktype boundary condition of importance in gas dynamics and oceanography. To clarify the mathematical basis of their method of inequalities, a proof of their main asymptotic results is given here. It depends on substantially weakened hypotheses.  相似文献   

5.
6.
7.
8.
9.
This paper treats the asymptotic behavior of solutions of a linear secondorder elliptic partial differential equation defined on a two-dimensional semiinfinite strip. The equation has divergence form and variable coefficients. Such equations arise in the theory of steady-state heat conduction for inhomogeneous anisotropic materials, as well as in the theory of anti-plane shear deformations for a linearized inhomogeneous anisotropic elastic solid. Solutions of such equations that vanish on the long sides of the strip are shown to satisfy a theorem of Phragmén-Lindelöf type, providing estimates for the rate of growth or decay which are optimal for the case of constant coefficients. The results are illustrated by several examples. The estimates obtained in this paper can be used to assess the influence of inhomogeneity and anisotropy on the decay of end effects arising in connection with Saint-Venant's principle.  相似文献   

10.
11.
In this paper, we study initial value problem for some non-conservative hyperbolic systems of partial differential equations of first order. The first one is the Riemann problem for a model in elastodynamics and the second one the initial value problem for a system which is a generalization of the Hopf equation. The non-conservative products which appear in the equations do not make sense in the classical theory of distributions and are understood in the sense of Volpert (Math. USSR Sb. 2 (1967) 225). Following Lax (Comm. Pure Appl. Math. 10 (1957) 537) and Dal Maso et al. (J. Math. Pures Appl. 74 (1995) 483), we give an explicit solution for the Riemann problem for the elastodynamics equation. The coupled Hopf equation is studied using a generalization of the method of Hopf (Comm. Pure Appl. Math. 3 (1950) 201).  相似文献   

12.
13.
14.
15.
The purpose is to extend the existence result of vortex solutions to semilinear elliptic equations for a large class of nonlinearities. M. I. Weinstein used variational techniques to show the existence of nodal solutions for the specific nonlinear term f(¦¦)=(1–¦¦2). An ordinary differential equation phase space setting is used to show the unique transverse intersection of unstable and stable manifolds which contain the solutions satisfying the necessary boundary conditions under certain assumptions on the nonlinearity.  相似文献   

16.
The asymptotic behavior of the doubly periodic strain state on a three-dimensional body is discussed. The components of the elastic state are initially assumed to be bounded by an arbitrary polynomial. It is then shown that the components can be approximated by second degree polynomials whose coefficients can be readily computed from data generally available in such problems. The error in using the approximation at different points in the elastic body is on the order of the reciprocal of any polynomial of the distance to the boundary of the body.  相似文献   

17.
This is a study on the initial and boundary value problem of a symmetric hyperbolic system which is related to the conduction of heat in solids at low temperatures. The nonlinear system consists of a conservation equation for the energy density e and a balance equation for the heat flux , where e and are the four basic fields of the theory. The initial and boundary value problem that uses exclusively prescribed boundary data for the energy density e is solved by a new kinetic approach that was introduced and evaluated by Dreyer and Kunik in [1], [2] and Pertame [3]. This method includes the formation of shock fronts and the broadening of heat pulses. These effects cannot be observed in the linearized theory, as it is described in [4]. The kinetic representations of the initial and boundary value problem reveal a peculiar phenomenon. To the solution there contribute integrals containing the initial fields as well as integrals that need knowledge on energy and heat flux at a boundary. However, only one of these quantities can be controlled in an experiment. When this ambiguity is removed by continuity conditions, it turns out that after some very short time the energy density and heat flux are related to the initial data according to the Rankine Hugoniot relation. Received October 6, 1998  相似文献   

18.
19.
20.
We consider the initial boundary-value problem for a system of quasilinear partial functional differential equations of the first order
$ {*{20}{c}} {{\partial_t}{z_i}\left( {t,x} \right) + \sum\limits_{j = 1}^n {{\rho_{ij}}\left( {t,x,V\left( {z;t,x} \right)} \right){\partial_{{x_j}}}{z_i}\left( {t,x} \right) = {G_i}\left( {t,x,V\left( {z;t,x} \right)} \right),} } \hfill & {1 \leq i \leq m,} \hfill \\ $ \begin{array}{*{20}{c}} {{\partial_t}{z_i}\left( {t,x} \right) + \sum\limits_{j = 1}^n {{\rho_{ij}}\left( {t,x,V\left( {z;t,x} \right)} \right){\partial_{{x_j}}}{z_i}\left( {t,x} \right) = {G_i}\left( {t,x,V\left( {z;t,x} \right)} \right),} } \hfill & {1 \leq i \leq m,} \hfill \\ \end{array}  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号